Cho bốn điểm A(0; 1; 3), B(– 1; 0; 5), C(2; 0; 2) và D(1; 1; – 2)

61

Với giải Bài 5 trang 87 Toán 12 Tập 2 Cánh diều chi tiết trong Bài tập cuối chương 5 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài tập cuối chương 5

Bài 5 trang 87 Toán 12 Tập 2: Cho bốn điểm A(0; 1; 3), B(– 1; 0; 5), C(2; 0; 2) và D(1; 1; – 2).

a) Tìm toạ độ của hai vectơ AB,  AC và một vectơ vuông góc với cả hai vectơ đó.

b) Viết phương trình tham số và phương trình chính tắc của hai đường thẳng AB và AC.

c) Viết phương trình tổng quát của mặt phẳng (ABC).

d) Chứng minh rằng bốn điểm A, B, C, D không đồng phẳng.

e) Tính khoảng cách từ điểm D đến mặt phẳng (ABC).

Lời giải:

a) Ta có AB=1;1;2,  AC=2;1;1.

Xét vectơ n=AB,AC=1211;2112;1121=3;3;3.

Khi đó, n=3;3;3 là một vectơ vuông góc với cả hai vectơ AB,  AC.

b) + Đường thẳng AB đi qua điểm A và nhận vectơ AB=1;1;2 làm vectơ chỉ phương.

Phương trình tham số của đường thẳng AB là x=ty=1tz=3+2t (t là tham số).

Phương trình chính tắc của đường thẳng AB là x1=y11=z32.

+ Đường thẳng AC đi qua điểm A và nhận vectơ AC=2;1;1 làm vectơ chỉ phương.

Phương trình tham số của đường thẳng AC là x=2ty=1tz=3t (t là tham số).

Phương trình chính tắc của đường thẳng AC là x2=y11=z31.

c) Mặt phẳng (ABC) đi qua điểm A và nhận vectơ n'=13n=1;1;1 làm vectơ pháp tuyến. Phương trình tổng quát của mặt phẳng (ABC) là:

1(x – 0) + 1(y – 1) + 1(z – 3) = 0 ⇔ x + y + z – 4 = 0.

d) Thay tọa độ điểm D(1; 1; – 2) vào phương trình mặt phẳng (ABC) ta được:

1 + 1 + (– 2) – 4 = – 4 ≠ 0.

Suy ra điểm D không thuộc mặt phẳng (ABC).

Vậy bốn điểm A, B, C, D không đồng phẳng.

e) Khoảng cách từ điểm D đến mặt phẳng (ABC) là:

d(D, (ABC)) = 1+1+2412+12+12=43=433

Đánh giá

0

0 đánh giá