Xác định vị trí tương đối của hai đường thẳng ∆1 và ∆2 trong mỗi trường hợp sau

93

Với giải Bài 8 trang 88 Toán 12 Tập 2 Cánh diều chi tiết trong Bài tập cuối chương 5 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài tập cuối chương 5

Bài 8 trang 88 Toán 12 Tập 2: Xác định vị trí tương đối của hai đường thẳng ∆1 và ∆2 trong mỗi trường hợp sau:

Bài 8 trang 88 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Lời giải:

a) Đường thẳng ∆1 đi qua điểm M1(– 1; – 5; 5) và có u1=3;4;1 là vectơ chỉ phương.

Đường thẳng ∆2 đi qua điểm M2(– 13; 5; – 17) và có u2=5;2;7 là vectơ chỉ phương.

Ta có 3542, suy ra hai vectơ u1,  u2 không cùng phương.

M1M2=12;10;22u1,u2=4127;1375;3452=26;26;26.

Do u1u2M1M2= 26 ∙ (– 12) + (– 26) ∙ 10 + (– 26) ∙ (– 22) = 0 nên u1,  u2,  M1M2 đồng phẳng.

Vậy ∆1 cắt ∆2.

b) Đường thẳng ∆1 đi qua điểm M1(2; – 1; 4) và có u1=2;3;7 là vectơ chỉ phương.

Đường thẳng ∆2 đi qua điểm M2(– 10; – 19; 45) và có u2=6;9;21 là vectơ chỉ phương.

Ta có u2=3u1, suy ra hai vectơ u1,  u2 cùng phương.

M1M2=12;18;41 và 122=183417 nên u1,  M1M2 không cùng phương.

Vậy ∆1 // ∆2.

c) Đường thẳng ∆1 đi qua điểm M1(– 3; 5; 2) và có u1=1;1;3 là vectơ chỉ phương.

Đường thẳng ∆2 đi qua điểm M2(– 13; 9; – 13) và có u2=5;2;7 là vectơ chỉ phương.

Ta có 1512, suy ra hai vectơ u1,  u2 không cùng phương.

M1M2=10;4;15u1,u2=1327;3175;1152=13;8;7.

Do u1u2M1M2=13 ∙ (– 10) + 8 ∙ 4 + (– 7) ∙ (– 15) = 7 ≠ 0 nên u1,  u2,  M1M2 không đồng phẳng.

Vậy ∆1 và ∆2 chéo nhau.

Đánh giá

0

0 đánh giá