Trong không gian với hệ trục toạ độ Oxyz, cho hình lập phương OBCD.O'B'C'D'

87

Với giải Bài 12 trang 88 Toán 12 Tập 2 Cánh diều chi tiết trong Bài tập cuối chương 5 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài tập cuối chương 5

Bài 12 trang 88 Toán 12 Tập 2: Trong không gian với hệ trục toạ độ Oxyz, cho hình lập phương OBCD.O'B'C'D' có O(0; 0; 0), B(a; 0; 0), D(0; a; 0), O'(0; 0; a) với a > 0.

a) Chứng minh rằng đường chéo O'C vuông góc với mặt phẳng (OB'D').

b) Chứng minh rằng giao điểm của đường chéo O'C và mặt phẳng (OB'D') là trọng tâm của tam giác OB'D'.

c) Tính khoảng cách từ điểm B' đến mặt phẳng (C'BD).

d) Tính côsin góc giữa hai mặt phẳng (CO'D) và (C'BD).

Lời giải:

Gọi tọa độ điểm C là C(x­C; yC; zC). Ta có OB=a;0;0,  DC=xC;yCa;zC.

Vì OBCD.O'B'C'Dlà hình lập phương nên OBCD là hình vuông, do đó ta có

DC=OBxC=ayCa=0zC=0xC=ayC=azC=0.

Suy ra C(a; a; 0).

Gọi tọa độ điểm B' là B'(xB'; yB'; zB'). Ta có BB'=xB'a;yB';zB',  OO'=0;0;a.

Ta có BB'=OO'xB'a=0yB'=0zB'=axB'=ayB'=0zB'=a. Suy ra B'(a; 0; a).

Gọi tọa độ điểm D' là D'(xD'; yD'; zD'). Khi đó DD'=xD';yD'a;zD'.

Ta có DD'=OO'xD'=0yD'a=0zD'=axD'=0yD'=azD'=a. Suy ra D'(0; a; a).

a) Ta có OB'=a;0;a,  OD'=0;a;a.

Xét vectơ n1=OB',OD'=0aaa;aaa0;a00a=a2;a2;a2.

Khi đó n1 là một vectơ pháp tuyến của mặt phẳng (OB'D').

Lại có O'C=a;a;a. Ta có n1=aO'C, suy ra hai vectơ n1,O'C cùng phương.

Do đó, O'C cũng là một vectơ pháp tuyến của mặt phẳng (OB'D').

Vậy đường chéo O'C vuông góc với mặt phẳng (OB'D').

b) Phương trình tổng quát của mặt phẳng (OB'D') đi qua điểm O và nhận O'C làm vectơ pháp tuyến là: a(x – 0) + a(y – 0) – a(z – 0) = 0 ⇔ x + y – z = 0 (do a > 0).

Phương trình tham số của đường thẳng O'C đi qua đi qua điểm O'(0; 0; a) và nhận uO'C=1aO'C=1;1;1 làm vectơ chỉ phương là: x=ty=tz=at (t là tham số).

Gọi G là giao điểm của đường chéo O'C và mặt phẳng (OB'D').

Vì G ∈ O'C nên gọi tọa độ điểm G là G(t; t; a – t).

Mà G ∈ (OB'D') nên ta có t + t – (a – t) = 0, suy ra t = a3. Do đó Ga3;a3;2a3.

Tọa độ trọng tâm G' của tam giác OB'D'0+a+03=a3;  0+0+a3=a3;  0+a+a3=2a3.

Suy ra G'a3;a3;2a3. Do đó, G ≡ G'.

Vậy giao điểm của đường chéo O'C và mặt phẳng (OB'D') là trọng tâm của tam giác OB'D'.

c) Gọi tọa độ điểm C' là C'(xC'; yC'; zC'). Khi đó CC'=xC'a;yC'a;zC'.

Ta có CC'=OO'xC'a=0yC'a=0zC'=axC'=ayC'=azC'=a. Suy ra C'(a; a; a).

Ta có C'B=0;a;a,  C'D=a;0;a.

Xét vectơ n2=C'B,C'D=aa0a;a0aa;0aa0=a2;a2;a2.

Khi đó, n3=1a2n2=1;1;1 là một vectơ pháp tuyến của mặt phẳng (C'BD).

Phương trình tổng quát của mặt phẳng (C'BD) là:

(x – a) + (y – a) – (z – a) = 0 ⇔ x + y – z – a = 0.

Khoảng cách từ điểm B' đến mặt phẳng (C'BD) là:

d(B', (C'BD)) = a+0aa12+12+12=a3 (do a > 0).

d) Ta có O'C=a;a;a,  O'D=0;a;a.

Xét vectơ n4=O'C,O'D=aaaa;aaa0;aa0a=0;a2;a2.

Khi đó,n5=1a2n4=0;1;1 là một vectơ pháp tuyến của mặt phẳng (CO'D).

Ta có cos ((CO'D), (C'BD)) = 10+11+1112+12+1202+12+12=0

Đánh giá

0

0 đánh giá