Lập phương trình mặt phẳng (P) trong mỗi trường hợp sau: (P) đi qua điểm I(3; – 4; 1) và vuông góc với trục Ox

399

Với giải Bài 5 trang 63 Toán 12 Tập 2 Cánh diều chi tiết trong Bài 1: Phương trình mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng

Bài 5 trang 63 Toán 12 Tập 2: Lập phương trình mặt phẳng (P) trong mỗi trường hợp sau:

a) (P) đi qua điểm I(3; – 4; 1) và vuông góc với trục Ox;

b) (P) đi qua điểm K(– 2; 4; – 1) và song song với mặt phẳng (Ozx);

c) (P) đi qua điểm K(– 2; 4; – 1) và song song với mặt phẳng (Q): 3x + 7y + 10z + 1 = 0.

Lời giải:

a) Vì mặt phẳng (P) vuông góc với trục Ox nên (P) nhận vectơ i=1;0;0 làm vectơ pháp tuyến.

Vậy phương trình mặt phẳng (P) là:

1(x – 3) + 0(y + 4) + 0(z – 1) = 0 ⇔ x – 3 = 0.

b) Ta có (Ozx): y = 0. Một vectơ pháp tuyến của mặt phẳng (Ozx) là j=0;1;0.

Vì mặt phẳng (P) song song với mặt phẳng (Ozx) nên (P) nhận j=0;1;0 làm vectơ pháp tuyến.

Vậy phương trình mặt phẳng (P) là:

0(x + 2) + 1(y – 4) + 0(z + 1) = 0 ⇔ y – 4 = 0.

c) (Q): 3x + 7y + 10z + 1 = 0. Một vectơ pháp tuyến của mặt phẳng (Q) là n=3;7;10.

Vì mặt phẳng (P) song song với mặt phẳng (Q) nên (P) nhận n=3;7;10 làm vectơ pháp tuyến.

Vậy phương trình mặt phẳng (P) là:

3(x + 2) + 7(y – 4) + 10(z + 1) = 0 ⇔ 3x + 7y + 10z – 12 = 0.

Đánh giá

0

0 đánh giá