Cho điểm I nằm ngoài đường tròn (O). Qua I kẻ hai đường thẳng lần lượt cắt (O) tại bốn điểm A, B và C, D

173

Với giải Bài 9.19 trang 83 Toán 9 Tập 2 Kết nối tri thức chi tiết trong Bài 29: Tứ giác nội tiếp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 29: Tứ giác nội tiếp

Bài 9.19 trang 83 Toán 9 Tập 2: Cho điểm I nằm ngoài đường tròn (O). Qua I kẻ hai đường thẳng lần lượt cắt (O) tại bốn điểm A, B và C, D sao cho A nằm giữa B và I, C nằm giữa D và I. Chứng minh rằng IBD^=ICA^,IAC^=IDB^ và IA . IB = IC . ID.

Lời giải:

Bài 9.19 trang 83 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

– Vì tứ giác ABDC nội tiếp đường tròn (O) nên các góc đối diện có tổng số đo bằng 180°. Do đó:

 DCA^+ABD^=180°

 DCA^+ICA^=180° (hai góc kề bù) nên ABD^=ICA^ hay IBD^=ICA^.

 BAC^+BDC^=180°.

 BAC^+IAC^=180° (hai góc kề bù) nên BDC^=IAC^ hay IDB^=IAC^.

– Xét ∆IAC và ∆IDB, có:

IAC^=IDB^ (chứng minh trên) và BID^ là góc chung

Do đó ∆IAC ᔕ ∆IDB (g.g)

Suy ra IAID=ICIB (tỉ số đồng dạng) nên IA . IB = IC . ID.

Đánh giá

0

0 đánh giá