Nếu các hình chữ nhật có chung một đường chéo (ví dụ như hai hình chữ nhật ABCD và AECF trong Hình 9.36)

158

Với giải Thử thách nhỏ 2 trang 83 Toán 9 Tập 2 Kết nối tri thức chi tiết trong Bài 29: Tứ giác nội tiếp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 29: Tứ giác nội tiếp

Thử thách nhỏ 2 trang 83 Toán 9 Tập 2: Nếu các hình chữ nhật có chung một đường chéo (ví dụ như hai hình chữ nhật ABCD và AECF trong Hình 9.36) thì các đỉnh của chúng có cùng nằm trên một đường tròn không?

Thử thách nhỏ 2 trang 83 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Vì ABCD là hình chữ nhật nên nó nội tiếp đường tròn đường kính AC, hay bốn điểm A, B, C, D cùng nằm trên đường tròn đường kính AC.

Vì AECF là hình chữ nhật nên nó nội tiếp đường tròn đường kính AC, hay bốn điểm A, E, C, F cùng nằm trên đường tròn đường kính AC.

Do đó các điểm A, B, C, D, E, F cùng nằm trên đường kính AC.

Vậy các đỉnh của hai hình chữ nhật có chung một đường chéo thì các đỉnh của chúng cùng nằm trên một đường tròn đường kính là đường chéo chung đó.

Đánh giá

0

0 đánh giá