Một mảnh đất hình chữ nhật có diện tích 360 m2. Nếu tăng chiều rộng 3 m và giảm chiều dài 4 m

337

Với giải Bài 6.28 trang 27 Toán 9 Tập 2 Kết nối tri thức chi tiết trong Bài 21: Giải bài toán bằng cách lập phương trình giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 21: Giải bài toán bằng cách lập phương trình

Bài 6.28 trang 27 Toán 9 Tập 2: Một mảnh đất hình chữ nhật có diện tích 360 m2. Nếu tăng chiều rộng 3 m và giảm chiều dài 4 m thì diện tích mảnh đất không đổi. Tìm các kích thước của mảnh đất đó.

Lời giải:

Gọi x (m) là chiều rộng của hình chữ nhật (x > 0).

Chiều dài của hình chữ nhật là 360x (m).

Chiều rộng tăng 3 m nên chiều rộng sau tăng là: x + 3 (m).

Chiều dài giảm 4 m nên chiều dài sau giảm là: 360x4 (m).

Theo bài, sau khi thay đổi kích thước thì diện tích mảnh đất không đổi, nên ta có phương trình:

x+3360x4=360

3604x+1080x12360=0

4x+1080x12=0.

Quy đồng mẫu vế trái của phương trình, ta được:

4x2x+1080x12xx=0.

Nhân cả hai vế của phương trình với x để khử mẫu, ta được phương trình bậc hai:

–4x2 + 1 080 – 12x = 0

x2 + 3x – 270 = 0.

Ta có ∆ = 32 – 4.1.(–270) = 1 089 và Δ=1089=33.

Suy ra phương trình trên có hai nghiệm phân biệt:

x1=33321=18 (loại); x2=3+3321=15 (thỏa mãn điều kiện).

Vậy chiều rộng của mảnh đất là 15 (m) và chiều dài của mảnh đất là: 36015=24 (m).

Đánh giá

0

0 đánh giá