Lý thuyết Bất đẳng thức (Cánh diều 2024) | Lý thuyết Toán 9

573

Với tóm tắt lý thuyết Toán lớp 9 Bài 1: Bất đẳng thức sách Cánh diều hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.

Lý thuyết Toán 9 Bài 1: Bất đẳng thức

A. Lý thuyết Bất đẳng thức

1. Nhắc lại thứ tự trong tập hợp số thực

Trong hai số khác nhau luôn có số này nhỏ hơn số kia.

- Nếu số thực a nhỏ hơn số thực b thì ta viết a<b hay b>a.

- Số thực lớn hơn 0 gọi là số thực dương.

- Số thực nhỏ hơn 0 gọi là số thực âm.

Ta có các kết quả:

- Trên trục số nằm ngang, nếu số thực a nằm bên trái số thực b thì a<b hay b>a.

Lý thuyết Bất đẳng thức (Cánh diều 2024) | Lý thuyết Toán 9 (ảnh 1)

- Tổng của hai số thực dương là số thực dương. Tổng của hai số thực âm là số thực âm.

- Với hai số thực a, b, ta có:

ab>0 thì a, b cùng dương hoặc cùng âm (hay a, b cùng dấu) và ngược lại:

ab<0 thì a, b trái dấu và ngược lại.

- Với a, b là hai số thực dương, nếu a>b thì a>b.

2. Bất đẳng thức

Khái niệm bất đẳng thức

Ta gọi hệ thức dạng a>b (hay a<babab) là bất đẳng thức và gọi a là vế trái, b là vế phải của bất đẳng thức.

Chú ý:

Hai bất đẳng thức a<b và c<d (hay a>b và c>d) được gọi là hai bất đẳng thức cùng chiều.

Hai bất đẳng thức a<b và c>d (hay a>b và c<d) được gọi là hai bất đẳng thức ngược chiều.

Tính chất của bất đẳng thức

Với hai số thực a và b, ta có:

- Nếu a>b thì ab>0. Ngược lại, nếu ab>0 thì a>b.

- Nếu a<b thì ab<0. Ngược lại, nếu ab<0 thì a<b.

- Nếu ab thì ab0. Ngược lại, nếu ab0 thì ab.

- Nếu ab thì ab0. Ngược lại, nếu ab0 thì ab.

Nhận xét: Do khẳng định nêu trên, để chứng minh a>b, ta có thể chứng minh ab>0 hoặc chứng minh ba<0.

Liên hệ giữa thứ tự và phép cộng

Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

Nếu a<b thì a+c<b+c.

Nếu a>b thì a+c>b+c.

Nếu ab thì a+cb+c.

Nếu ab thì a+cb+c.

Ví dụ: Vì 2023<2024 nên 2023+(19)<2024+(19)

Liên hệ giữa thứ tự và phép nhân

- Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương, ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

Với ba số a, b, c mà c > 0, ta có:

- Nếu a<b thì ac<bc.

- Nếu a>b thì ac>bc.

- Nếu ab thì acbc.

- Nếu ab thì acbc.

- Khi nhân cả hai vế của một bất đẳng thức với cùng một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.

Với ba số a, b, c và c < 0, ta có:

Nếu a<b thì ac>bc.

Nếu a>b thì ac<bc.

Nếu ab thì acbc.

Nếu ab thì acbc.

Ví dụ:

Vì 7<5 và 3>0 nên 3.(7)<3.(5).

Vì 7<5 và 3<0 nên (3).(7)>(3).(5).

Tính chất bắc cầu của bất đẳng thức

Nếu a>b và b>c thì a>c.

Ví dụ: Vì 20242023=1+12023>1 và 20212022=112022<1 nên 20242023>20212022.

Sơ đồ tư duy Bất đẳng thức

B. Bài tập Bất đẳng thức

Bài 1. Bất đẳng thức n ≤ 3 có thể được phát biểu là

A. n lớn hơn 3.

B. n nhỏ hơn 3.

C. n không nhỏ hơn 3.

D. n không lớn hơn 3.

Hướng dẫn giải

Đáp án đúng là: D

Bất đẳng thức n ≤ 3 có thể được phát biểu là “n nhỏ hơn hoặc bằng 3” hoặc cũng có thể phát biểu là “n không lớn hơn 3”.

Bài 2. Cho các số thực x, y, z và x < y. Khẳng định nào sau đây là sai?

A. x + z < y + z.

B. xz < yz nếu z là số âm.

C. xz < yz nếu z là số dương.

D. x – z < y – z.

Hướng dẫn giải

Đáp án đúng là: B

Nếu x < y và z < 0 thì xz > yz.

Vậy khẳng định ở phương án B là sai.

Bài 3. Cho a > b, hãy so sánh:

a) a – 2 và  b – 2.

b) –5a và –5b.

c) 10 – 3a và 10 – 3b.

d) 12a + 1 và 12b – 4.

e) 2 – 9a và 5 – 9b.

Hướng dẫn giải

a) Do a > b nên a – 2 > b – 2.

b) Do a > b nên –5a < –5b.

c) Do a > b nên –3a < –3b, suy ra 10 – 3a < 10 – 3b.

d) Do a > b nên 12a > 12b, suy ra 12a + 1 > 12b + 1.

Mà 12b + 1 > 12b + 1 – 5 hay 12b + 1 > 12b – 4.

Vậy 12a + 1 > 12b – 4.

e) Do a > b nên –9a < –9b, suy ra 2 – 9a < 2 – 9b.

Mà 2 – 9b < 2 – 9b + 3 hay 2 – 9b < 5 – 9b.

Vậy 2 – 9a < 5 – 9b.

Bài 4. Cho x > 0, chứng minh rằng x+1x2.

Hướng dẫn giải

Ta có (x – 1)2 ≥ 0 với mọi x, suy ra x2 + 1 ≥ 2x.

Vì x > 0 nên x2+1x2xx, hay x2x+1x2.

Vậy x+1x2.

Xem thêm các bài tóm tắt Lý thuyết Toán lớp 9 Cánh diều hay, chi tiết khác:

Lý thuyết Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn

Lý thuyết Bài 1: Bất đẳng thức

Lý thuyết Bài 2: Bất phương trình bậc nhất một ẩn

Lý thuyết Bài 1: Căn bậc hai và căn bậc ba của số thực

Lý thuyết Bài 2: Một số phép tính về căn bậc hai của số thực

Lý thuyết Bài 3: Căn thức bậc hai và căn thức bậc ba của biểu thức đại số

Đánh giá

0

0 đánh giá