Lý thuyết Góc ở tâm, góc nội tiếp (Chân trời sáng tạo 2024) | Lý thuyết Toán 9

536

Với tóm tắt lý thuyết Toán lớp 9 Bài 3: Góc ở tâm, góc nội tiếp sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.

Lý thuyết Toán 9 Bài 3: Góc ở tâm, góc nội tiếp

A. Lý thuyết Góc ở tâm, góc nội tiếp

1. Góc ở tâm

Định nghĩa

Góc ở tâm là góc có đỉnh trùng với tâm đường tròn.

2. Cung, số đo cung

Cung

Mỗi phần đường tròn giới hạn bởi hai điểm A, B trên đường tròn gọi là một cung AB, kí hiệu là AB.

Ví dụ:

Lý thuyết Góc ở tâm, góc nội tiếp (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 1)

Góc ở tâm AOB^ chắn cung AnB hay cung AnB bị chắn bởi góc ở tâm AOB^.

AnB là cung nhỏ và AmB là cung lớn.

Số đo cung

- Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.

- Số đo của cung lớn bằng: 3600 - số đo cung nhỏ có chung đầu mút với cung lớn.

- Số đo của cung nửa đường tròn bằng 1800.

- Số đo của cung AB được kí hiệu là sđAB.

Chú ý:

- Cung nhỏ có số đo nhỏ hơn 1800, cung lớn có số đo lớn hơn 1800. Cung nửa đường tròn có số đo 1800.

- Khi hai mút của cung trùng nhau, ta có cung không với số đo 00 và cung cả đường tròn có số đo 3600.

- Một cung có số đo n0 thường được gọi tắt là cung n0.

- Trong một đường tròn, hai cung được gọi là bằng nhau nếu chúng có số đo bằng nhau.

3. Góc nội tiếp

Định nghĩa

Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó. Cung nằm bên trong của góc được gọi là cung bị chắn.

Số đo góc nội tiếp

Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.

Ví dụ:

Lý thuyết Góc ở tâm, góc nội tiếp (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 2)

AMB^ là góc nội tiếp chắn AB trên đường tròn (O) nên AMB^=12AB.

Chú ý: Trong một đường tròn:

- Các góc nội tiếp bằng nhau chắn các cung bằng nhau.

- Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.

- Góc nội tiếp nhỏ hơn hoặc bằng 90o có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.

Góc nội tiếp chắn nửa đường tròn là góc vuông.

Lý thuyết Góc ở tâm, góc nội tiếp (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 3)

Sơ đồ tư duy Góc ở tâm, góc nội tiếp

B. Bài tập Góc ở tâm, góc nội tiếp

Bài 1. Nếu tứ giác ABCD là một tứ giác nội tiếp đường tròn. Chọn khẳng định sai.

A.BAD^+BCD^=180°;

B. ABD^=ACD^;

C. Tổng 4 góc là 360°;

D. ADB^=DAC^.

Hướng dẫn giải

Đáp án đúng là: D

Góc ở tâm, góc nội tiếp (Lý thuyết Toán lớp 9) | Chân trời sáng tạo

Xét đường tròn (O) có:

BAD^+BCD^=180° (tổng hai góc đối)

ABD^=ACD^ (hai góc nội tiếp cùng chắn cung AD )

A^+B^+C^+D^=360° (tổng 4 góc trong tứ giác).

Bài 2. Cho đường tròn (O) đường kính AB, vẽ góc ở tâm AOC^=50° với C nằm trên (O). Vẽ dây CD vuông góc với AB và dây DE song song với AB.

a) Tính số đo cung nhỏ BE;

b) Tính số đo cung CBE.  Từ đó suy ra ba điểm C, O, E thẳng hàng.

Hướng dẫn giải

Theo đề bài, ta có hình vẽ sau:

Góc ở tâm, góc nội tiếp (Lý thuyết Toán lớp 9) | Chân trời sáng tạo

a) Xét đường tròn (O) có: AB ⊥ CD và AB là đường kính.

Suy ra AB cắt CD tại trung điểm CD mà DE // AB nên DE ⊥ CD.

Do đó ∆CDE vuông tại D mà C, D, E đều nằm trên đường tròn (O).

Suy ra CE là đường kính của đường tròn (O).

Ta có: AB cắt CE tại O suy ra AOC^=BOE^=50°  (hai góc đối đỉnh).

Vậy sđBE=BOE^=50°.

b) Vì CE là đường kính nên sđCBE=180°.

Suy ra ba điểm C, O, E thẳng hàng.

Bài 3. Xác định số đo các cung  AB,BC,CAtrong mỗi hình vẽ sau.

Góc ở tâm, góc nội tiếp (Lý thuyết Toán lớp 9) | Chân trời sáng tạo

Góc ở tâm, góc nội tiếp (Lý thuyết Toán lớp 9) | Chân trời sáng tạo

Hướng dẫn giải

a) Xét tam giác ABC, ta có:

BAC^=180°CBA^ACB^=180°60°40°=80°.

 

 sđBC=2BAC^=2.80°=160° (vì BC  BAC^  cùng chắn cung BC).

 sđAB=2ACB^=2.40°=80° (vì AB và ACB^ cùng chắn cung AB).

 sđAC=2ABC^=2.60°=120° (vì AC  ABC^  cùng chắn cung AC).

b) Ta có sđBC và góc ở tâm BOC^ cùng chắn cung BC suy ra sđBC=BOC^=140°.

Xét ∆OAB có OA = OB = R suy ra ∆OAB cân tại O.

Mặt khác OBA^=40° nên AOB^=180°2OBA^=180°2.40°=100°.

Ta có sđAB=AOB^=100° (vì AB  AOB^ cùng chắn cung AB).

Suy ra sđAC=360°sđABsđBC=360°100°140°=120°.

Xem thêm các bài tóm tắt Lý thuyết Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 1: Tỉ số lượng giác của góc nhọn

Lý thuyết Bài 2: Hệ thức giữa cạnh và góc của tam giác vuông

Lý thuyết Bài 1: Đường tròn

Lý thuyết Bài 2: Tiếp tuyến của đường tròn

Lý thuyết Bài 3: Góc ở tâm, góc nội tiếp

Lý thuyết Bài 4: Hình quạt tròn và hình vành khuyên

Đánh giá

0

0 đánh giá