Với tóm tắt lý thuyết Toán lớp 9 Bài 2: Hệ thức giữa cạnh và góc của tam giác vuông sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.
Lý thuyết Toán 9 Bài 2: Hệ thức giữa cạnh và góc của tam giác vuông
A. Lý thuyết Hệ thức giữa cạnh và góc của tam giác vuông
1. Hệ thức giữa cạnh và góc của tam giác vuông
Công thức tính cạnh góc vuông theo cạnh huyền và sin, côsin của các góc nhọn
Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề. Cạnh góc vuông = (cạnh huyền ) × (sin góc đối) = (cạnh huyền ) × (cosin góc kề) |
Ví dụ 1:
Trong tam giác ABC vuông tại A, ta có:
Công thức tính cạnh góc vuông theo cạnh góc vuông kia và tang, côtang của các góc nhọn
Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với tang góc đối hoặc côtang góc kề. Cạnh góc vuông = (cạnh góc vuông còn lại ) × (tan góc đối) = (cạnh góc vuông còn lại ) × (cot góc kề) |
Ví dụ 2:
Trong tam giác ABC vuông tại A, ta có:
2. Giải tam giác vuông
Giải tam giác vuông là tính các cạnh và góc chưa biết của tam giác đó.
Sơ đồ tư duy Hệ thức giữa cạnh và góc của tam giác vuông
B. Bài tập Hệ thức giữa cạnh và góc của tam giác vuông
Bài 1. Cho tam giác ABC vuông tại A có AB = 5 cm, Độ dài hai cạnh còn lại là:
A. cm; cm;
B. cm; cm;
C. cm; cm;
D. cm; cm.
Hướng dẫn giải
Đáp án đúng là: A
Ta có: nên cm.
Áp dụng định lí Pythagore, ta có:
.
Suy ra cm.
Bài 2. Cho tam giác DEF có đường cao DS = 12 cm (như hình vẽ)
Độ dài của cạnh EF của tam giác DEF (kết quả làm tròn đến hàng phần mười) bằng
A. 25,6 cm;
B. 19,8 cm;
C. 20,2 cm;
D. 18,6 cm.
Hướng dẫn giải
Đáp án đúng là: C
Xét tam giác DEF có DS là đường cao, ta có:
Suy ra tam giác DES vuông tại S và tam giác DFS vuông tại S.
Xét tam giác DES vuông tại S, ta có:
nên cm.
Xét tam giác DES vuông tại S, ta có:
nên cm.
Mà EF = ES + FS = 6,9 + 13,3 = 20,2 cm.
Vậy độ dài cạnh EF là 20,2 cm.
Bài 3. Cho tam giác ABC vuông tại A có đường cao AH và góc B = α. Tìm giá trị α sao cho BH = 3CH.
Hướng dẫn giải
Theo đề bài, ta có hình vẽ sau:
Đặt AH = h.
Xét tam giác ABH vuông tại H, ta có:
BH = AH.cot B = h.cot α.
Xét tam giác ACH vuông tại H, ta có:
CH = AH.cot C = AH.tan B = h.tan α.
BH = 3CH suy ra
Do đó
Vậy α = 30°.
Bài 4. Một cầu trượt ở công viên có độ dốc là 28° và độ cao là 1,8 m. Tìm độ dài của mặt cầu trượt.
Hướng dẫn giải
Áp dụng hệ thức về cạnh và góc trong tam giác vuông ABC vuông tại A.
Khi đó, độ dài mặt cầu trượt là:
(m).
Vậy độ dài của mặt cầu trượt khoảng 3,83 m.
Xem thêm các bài tóm tắt Lý thuyết Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 1: Tỉ số lượng giác của góc nhọn
Lý thuyết Bài 2: Hệ thức giữa cạnh và góc của tam giác vuông
Lý thuyết Bài 2: Tiếp tuyến của đường tròn
Lý thuyết Bài 3: Góc ở tâm, góc nội tiếp
Lý thuyết Bài 4: Hình quạt tròn và hình vành khuyên