Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9

473

Với tóm tắt lý thuyết Toán lớp 9 Bài 4: Hình quạt tròn và hình vành khuyên sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.

Lý thuyết Toán 9 Bài 4: Hình quạt tròn và hình vành khuyên

A. Lý thuyết Hình quạt tròn và hình vành khuyên

1. Độ dài cung tròn

Công thức tính chu vi đường tròn

Công thức tính độ dài C của đường tròn (O; R), đường kính d = 2R là:

C=πd=2πR

Công thức tính độ dài cung tròn

Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 1) 

Trên đường tròn bán kính R, độ dài l của một cung có số đo n0 được tính theo công thức:

l=πRn180.

Ví dụ:

Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 2)

Đường tròn (O; 2cm), AOB^=600.

- Cung nhỏ AB bị chắn bởi góc ở tâm AOB.

Do đó sđAB=AOB^=600

Độ dài l1 của cung AB là:

l1=n180πR=60180π.2=2π32,1(cm)

Cung lớn AnB có số đo là:

AmN=360o600=3000.

Độ dài l2 của cung AnB là:

l2=300180π.2=103π10,5(cm)

2. Hình quạt tròn

Khái niệm hình quạt tròn

Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 3)

Hình quạt tròn là một phần hình tròn giới hạn bởi một cung tròn và hai bán kính đi qua hai mút của cung đó.

Diện tích hình quạt tròn

Diện tích hình quạt tròn bán kính R ứng với cung no:

S=πR2n360

Ví dụ: Diện tích hình quạt tròn có độ dài tương ứng với nó là l=4πcm, bán kính là R = 5cm là:

Sq=l.R2=4π.52=10π(cm2)

3. Hình vành khuyên

Khái niệm hình vành khuyên

Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 4)

Cho hai đường tròn đồng tâm (O;R) và (O;r) với R>r.

Hình vành khuyên là phần mặt phẳng giới hạn bởi hai đường tròn (O;r) và (O;R) được tính bởi công thức: S=π(R2r2).

Diện tích hình vành khuyên

Diện tích Sv của hình vành khuyên tạo bởi hai đường tròn đồng tâm và có bán kính R và r:

Sv=π(R2r2) (với R > r)

Ví dụ:  Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có bán kính là 3m và 5m là:

Sv=π(5232)=16π(m2)

Sơ đồ tư duy Hình quạt tròn và hình vành khuyên

B. Bài tập Hình quạt tròn và hình vành khuyên

Bài 1. Diện tích hình quạt tròn bán kính R, ứng với cung 45° là

A. πR2;

B. πR22;

C. πR24;

D. πR28.

Hướng dẫn giải

Đáp án đúng là: D

Diện tích hình quạt tròn bán kính R, ứng với cung 45° là:

S=πR2n360=π.R2.45360=πR28.

 

Diện tích hình quạt tròn bán kính R, ứng với cung 45° là πR28.

Bài 2. Diện tích hình vành khuyên giới hạn bởi đường tròn (O; 1 cm) và (O; 3 cm) là

A. 10 cm2;

B. 8 cm2;

C. 8π cm2;

D. 10π cm2.

Hướng dẫn giải

Đáp án đúng là: C

Diện tích hình vành khuyên giới hạn bởi đường tròn (O; 1 cm) và (O; 3 cm) là:

S=πR2r2=π3212=8π (cm2).

Bài 3. Cho đường tròn (O; 5 cm).

a) Hãy nêu cách vẽ dây AB sao cho khoảng cách từ điểm O đến dây bằng 2,5 cm;

b) Tính độ dài của dây AB trong câu a (làm tròn đến hàng phần trăm);

c) Tính số đo và độ dài của cung nhỏ AB;

d) Tính diện tích hình quạt tròn ứng với cung nhỏ AB.

Hướng dẫn giải

Theo đề bài, ta có hình vẽ sau:

Hình quạt tròn và hình vành khuyên (Lý thuyết Toán lớp 9) | Chân trời sáng tạo

a) Vẽ bán kính OM của đường tròn, trên OM lấy điểm H sao cho OH = 2,5 cm.

Kẻ đoạn thẳng AB vuông góc với OH tại H, cắt đường tròn tại A và B.

Khi đó, ta được dây cung AB cần vẽ.

b) Gọi H là trung điểm của AB.

Xét ∆OAH và ∆OBH có:

OA = OB = R; OH chung; OHA^=OHB^=90°.

Do đó ∆OAH = ∆OBH (cạnh huyền – cạnh góc vuông)

Suy ra AH = BH (hai cạnh tương ứng) và AB = 2AH.

Xét ∆OAH vuông tại H có: AH2 + OH2 = OA2 (định lí Pythagore)

Hay AH2 = OA2 – OH2 = 52 – 2,52 = 18,75.

Suy ra AH=532 (cm) và AB=2.532=538,66 (cm).

Vậy độ dài của dây AB khoảng 8,66 cm.

c) Xét ∆OAH vuông tại H có:

cosAOH^=OHOA=2,55=12 suy ra AOH^=60°.

Mà ∆OAH = ∆OBH suy ra BOH^=AOH^=60°  (hai góc tương ứng)

Suy ra AOB^=BOH^+AOH^=60°+60°=120° và sđAB=120°.

Độ dài cung AB là: 120180.  π  .  5=103π (cm).

Vậy sđAB=120°  và độ dài cung nhỏ AB bằng 103π  cm .

d) Diện tích hình quạt tròn ứng với cung nhỏ AB là:

π.52.  120360=25π3 (cm2).

Vậy diện tích hình quạt tròn ứng với cung nhỏ AB bằng 25π3 cm2.

Bài 4. Tính độ dài các cung 60°; 90°; 150° của đường tròn (O; 5 cm) (làm tròn kết quả đến hàng phần trăm).

Hướng dẫn giải

Cung 60°, bán kính R = 5 cm có độ dài là: l=πRn180=π.5.60180=5π35,23  (cm).

Cung 90°, bán kính R = 5 cm có độ dài là: l=πRn180=π.5.90180=5π27,85 (cm).

Cung 150°, bán kính R = 5 cm có độ dài là: l=πRn180=π.5.60180=25π613,09

Xem thêm các bài tóm tắt Lý thuyết Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 1: Tỉ số lượng giác của góc nhọn

Lý thuyết Bài 2: Hệ thức giữa cạnh và góc của tam giác vuông

Lý thuyết Bài 1: Đường tròn

Lý thuyết Bài 2: Tiếp tuyến của đường tròn

Lý thuyết Bài 3: Góc ở tâm, góc nội tiếp

Lý thuyết Bài 4: Hình quạt tròn và hình vành khuyên

Đánh giá

0

0 đánh giá