Lý thuyết Đường tròn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9

680

Với tóm tắt lý thuyết Toán lớp 9 Bài 1: Đường tròn sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.

Lý thuyết Toán 9 Bài 1: Đường tròn

A. Lý thuyết Đường tròn

1. Khái niệm đường tròn

Lý thuyết Đường tròn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 1)

Đường tròn tâm O bán kính R (R > 0), là hình gồm tất cả các điểm cách điểm O một khoảng bằng R, kí hiệu (O; R).

Khi không cần chú ý đến bán kính, đường tròn (O;R) còn được kí hiệu là (O).

Vị trí tương đối của điểm và đường tròn

Lý thuyết Đường tròn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 2)

Cho đường tròn (O; R) và điểm M. Khi đó:

- Nếu OM = R thì điểm M nằm trên đường tròn hay M thuộc đường tròn;

- Nếu OM < R thì điểm M nằm trong đường tròn;

- Nếu OM > R thì điểm M nằm ngoài đường tròn.

2. Tính đối xứng của đường tròn

Đường tròn là hình có tâm đối xứng; tâm đối xứng là tâm của đường tròn.

Đường tròn là hình có trục đối xứng. Mọi đường thẳng đi qua tâm của đường tròn đều là trục đối xứng của nó.

Ví dụ:

Lý thuyết Đường tròn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 3)

Hình tròn tâm I có:

I là tâm đối xứng;

Đường thẳng a, b là các trục đối xứng của hình tròn (I).

3. Đường kính và dây cung của đường tròn

Cho hai điểm C, D cùng thuộc một đường tròn. Đoạn thẳng CD gọi là dây cung hoặc dây. Đường kính AB  là một dây đi qua tâm.

Lý thuyết Đường tròn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 4)

Quan hệ giữa dây và đường kính

Trong các dây của một đường tròn, đường kính là dây có độ dài lớn nhất.

4. Vị trí tương đối của hai đường tròn

• Hai đường tròn không có điểm chung gọi là hai đường tròn không giao nhau. Hai đường tròn không giao nhau có thể ở ngoài nhau hoặc đường tròn này đựng đường tròn kia.

• Hai đường tròn chỉ có một điểm chung gọi là hai đường tròn tiếp xúc nhau. Điểm chung đó gọi là tiếp điểm.

Hai đường tròn tiếp xúc có thể tiếp xúc ngoài hoặc tiếp xúc trong.

• Hai đường tròn có đúng hai điểm chung gọi là hai đường tròn cắt nhau. Hai điểm chung gọi là hai giao điểm. Đoạn thẳng nối hai điểm chung được gọi là dây chung.

Chú ý: Nếu OO’ = 0 thì O trùng với O’. Hai đường tròn có tâm trùng nhau gọi là hai đường tròn đồng tâm.

Bảng tóm tắt vị trí tương đối của hai đường tròn phân biệt (O;R) và (O’; R’) với RR

Lý thuyết Đường tròn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 5)

Ví dụ 1: Cho OO’ = 5cm, khi đó hai đường tròn (O;4cm) và (O’;3cm) cắt nhau vì:

4cm – 3cm = 1cm < 5cm < 7cm = 4cm + 3cm.

Ví dụ 2: Cho OO’ = 5cm, khi đó hai đường tròn (O;3cm) và (O’;2cm) tiếp xúc ngoài với nhau vì 5cm = 3cm + 2cm.

Cho OO’ = 3cm, khi đó hai đường tròn (O;8cm) và (O’;5cm) tiếp xúc trong với nhau vì 3cm = 8cm - 5cm.

Ví dụ 3: Cho đường tròn (O;3cm) và (O’;4cm) có OO>8cm thì OO=8cm>3cm+4cm=R+R nên (O;3cm) và (O’;4cm) là hai đường tròn ngoài nhau.

Sơ đồ tư duy Đường tròn

B. Bài tập Đường tròn

Bài 1. Cho tam giác ABC vuông tại A. Xác định tâm và bán kính đường tròn đi qua ba đỉnh của tam giác ABC.

Hướng dẫn giải

Theo đề bài, ta có hình vẽ sau:

Đường tròn (Lý thuyết Toán lớp 9) | Chân trời sáng tạo

Gọi M là trung điểm của BC.

Ta có AM là trung tuyến ứng với cạnh huyền nên AM=BC2.

Suy ra MA=MB=MC=BC2.

Vậy đường tròn đi qua ba đỉnh của tam giác ABC có tâm là điểm M và bán kính R=BC2.

Bài 2. Cho đường tròn (O), bán kính 8 cm và ba điểm A, B, C thỏa mãn OA = 5 cm, OB = 3 cm, OC = 8 cm. Hãy cho biết mỗi điểm A, B, C nằm trong, nằm trên hay nằm ngoài đường tròn (O).

Hướng dẫn giải

Xét đường tròn (O) có bán kính R = 8 cm.

+ Ta có OA = 5 cm < R suy ra điểm A nằm trong đường tròn (O).

+ Ta có OB = 3 cm < R suy ra điểm B nằm trong đường tròn (O).

+ Ta có OC = 8 cm = R suy ra điểm C nằm trên đường tròn (O).

Bài 3. Cho hai đường tròn (O; 3 cm) và (A; 2 cm) cắt nhau tại B, C, điểm A nằm trên đường tròn tâm O.

a) Vẽ đường tròn (B; 3 cm);

b) Đường tròn (B; 3 cm) có đi qua hai điểm O và A không? Vì sao?

Hướng dẫn giải

a) Theo đề bài, ta có hình vẽ sau:

Đường tròn (Lý thuyết Toán lớp 9) | Chân trời sáng tạo

b) Đường tròn (O) và đường tròn (A) cắt nhau tại B, C suy ra điểm B nằm trên đường tròn (O) và đường tròn (A). Do đó bán kính của đường tròn (O) là OB = 3 cm.

Xét đường tròn (B) có bán kính là 3 cm mà OB = 3 cm, suy ra đường tròn (B) có đi qua điểm O.

Ta có điểm B nằm trên đường tròn (A) nên AB = 2 cm.

Vì AB < 3 cm suy ra điểm A nằm trong đường tròn (B). Do đó đường tròn (B) không đi qua điểm A.

Bài 4. Xác định vị trí tương đối của (O; R) và (O'; R') trong mỗi trường hợp sau:

a) OO' = 3;  R = 7; R' = 2

b) OO'= 10; R = 9;R' = 3

Hướng dẫn giải

a) Ta có 3 < 7 – 2 nên  suy ra đường tròn (O; R) đựng đường tròn (O'; R')

b) Ta có 9 – 3 < 10 < 9 + 3 nên R - R' < OO' < R + R' suy ra hai đường tròn (O; R) và (O'; R')  cắt nhau.

Xem thêm các bài tóm tắt Lý thuyết Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 1: Tỉ số lượng giác của góc nhọn

Lý thuyết Bài 2: Hệ thức giữa cạnh và góc của tam giác vuông

Lý thuyết Bài 1: Đường tròn

Lý thuyết Bài 2: Tiếp tuyến của đường tròn

Lý thuyết Bài 3: Góc ở tâm, góc nội tiếp

Lý thuyết Bài 4: Hình quạt tròn và hình vành khuyên

Đánh giá

0

0 đánh giá