Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9

654

Với tóm tắt lý thuyết Toán lớp 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.

Lý thuyết Toán 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn

A. Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn

1. Phương trình tích

Phương trình tích là phương trình có dạng (ax+b)(cx+d)=0.

Cách giải phương trình tích

Muốn giải phương trình tích (ax+b)(cx+d)=0, ta giải hai phương trình ax+b=0 và cx+d=0, rồi lấy tất cả các nghiệm của chúng.

Ví dụ: Giải phương trình (2x+1)(3x1)=0

Lời giải:

Ta có: (2x+1)(3x1)=0

2x+1=0 hoặc 3x1=0.

2x=1 hoặc 3x=1

x=12 hoặc x=13

Vậy phương trình đã cho có hai nghiệm là x=12 và x=13.

Các bước giải phương trình:

Bước 1. Đưa phương trình về phương trình tích (ax+b)(cx+d)=0.

Bước 2. Giải phương trình tích tìm được.

Ví dụ: Giải phương trình x2x=2x+2.

Lời giải:

Biến đổi phương trình đã cho về phương trình tích như sau:

x2x=2x+2x2x+2x2=0x(x1)+2(x1)=0(x+2)(x1)=0.

x+2=0 hoặc x1=0.

x=2 hoặc x=1.

Vậy phương trình đã cho có hai nghiệm là x=2 và x=1.

2. Phương trình chứa ẩn ở mẫu quy về phương trình bậc nhất

Điều kiện xác định của phương trình chứa ẩn ở mẫu

Đối với phương trình chứa ẩn ở mẫu, điều kiện của ẩn để tất cả các mẫu thức trong phương trình đều khác 0 gọi là điều kiện xác định của phương trình.

Ví dụ:

- Phương trình 5x+2x1=0 có điều kiện xác định là x1 vì x10 khi x1.

- Phương trình 1x+1=1+1x2 có điều kiện xác định là x1 và x2 vì x+10 khi x1x20 khi x2.

Các bước giải phương trình chứa ẩn ở mẫu

Bước 1. Tìm điều kiện xác định của phương trình.

Bước 2. Quy đồng mẫu thức hai vế của phương trình, rồi khử mẫu.

Bước 3. Giải phương trình vừa tìm được.

Bước 4. Xét mỗi giá trị tìm được ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.

Ví dụ: Giải phương trình 2x+1+1x2=3(x+1)(x2)

Lời giải:

Điều kiện xác định x1 và x2.

Ta có: 2x+1+1x2=3(x+1)(x2)

2(x2)+(x+1)(x+1)(x2)=3(x+1)(x2)

2(x2)+(x+1)=3

2(x2)+(x+1)=32x4+x+1=33x3=33x=6x=2

Giá trị x=2 không thỏa mãn ĐKXĐ.

Vậy phương trình 2x+1+1x2=3(x+1)(x2) vô nghiệm.

Sơ đồ tư duy Phương trình quy về phương trình bậc nhất một ẩn

B. Bài tập Phương trình quy về phương trình bậc nhất một ẩn

Bài 1. Giải các phương trình:

a) 4x(x + 2) = 0;

b) (2x – 8)(x – 7) = 0;

c) 3x – x2 = 0;

d) (x – 4)2 – 25x2 = 0.

Hướng dẫn giải

a) Ta có 4x(x + 2) = 0

4x = 0 hoặc x + 2 = 0

x = 0 hoặc x = –2.

Vậy phương trình đã cho có hai nghiệm là x = 0 và x = –2.

b) Ta có (2x – 8)(x – 7) = 0

2x – 8 = 0 hoặc x – 7 = 0

2x = 8 hoặc x = 7

x = 4 hoặc x = 7.

Vậy phương trình đã cho có hai nghiệm là x = 4 và x = 7.

c) Ta có 3x – x2 = 0

x(3 – x) = 0

x = 0 hoặc 3 – x = 0

x = 0 hoặc x = 3.

Vậy phương trình đã cho có hai nghiệm là x = 0 và x = 3.

d) Ta có (x – 3)2 – 16x2 = 0

(x – 3)2 – (4x)2 = 0

(x – 3 + 4x)(x – 3 – 4x) = 0

(5x – 3)(–3x – 3) = 0

5x – 3 = 0 hoặc –3x – 3 = 0

5x = 3 hoặc 3x = –3

x=35hoặc x = –1.

Vậy phương trình đã cho có hai nghiệm là x=35và x = –1.

Bài 2. Tìm điều kiện xác định của mỗi phương trình sau:

a) x+24x1=1;

b) 12x3=x+12x1.

Hướng dẫn giải

a) Điều kiện xác định của phương trình là 4x – 1 ≠ 0 hay x14.

b) Ta có x – 3 ≠ 0 khi x ≠ 3 và 2x – 1 ≠ 0 khi x12.

Vậy điều kiện xác định của phương trình là x ≠ 3 và x12.

Bài 3. Giải các phương trình:

a) 2xx+22=xx+2;

b) x1x31x+3=3x+3x3x+3;

c) x1x+2xx2=46xx24.

Hướng dẫn giải

a) Điều kiện xác định: x + 2 ≠ 0 hay x ≠-2.

Ta có 2xx+22=xx+2

2x2x+2x+2=xx+2

2x – 2(x + 2) = x

2x – 2x – 4 = x

x = -4 (thỏa mãn điều kiện)

Vậy phương trình đã cho có hai nghiệm là x = –4.

b) Điều kiện xác định: x ≠ 3 và x ≠ –3.

Ta có x1x31x+3=3x+3x3x+3

x1x+3x3x+3x3x3x+3=3x+3x3x+3

(x – 1)(x + 3) – (x – 3) = 3x + 3

x2 + 2x – 3 – x + 3 = 3x + 3

x2 + x = 3x + 3

x(x + 1) = 3(x + 1)

x(x + 1) -3(x + 1) = 0

(x + 1)(x -3) = 0

x + 1 = 0 hoặc x -3 = 0

x =-1 (thỏa mãn điều kiện) hoặc x = 3 (không thỏa mãn điều kiện).

Vậy phương trình đã cho có hai nghiệm là x = -1.

c) Điều kiện xác định: x ≠ 2 và x ≠ –2.

Ta có x1x+2xx2=46xx24

x1x+2xx2=46xx2x+2

x1x2x2x+2xx+2x2x+2=46xx2x+2

x2x2x+2x2x+2x2+2xx2x+2=46xx2x+2

5x+2x2x+2=46xx2x+2

-5x + 2 = 4 - 6x

6x - 5x = 4 - 2

x = 2 (không thỏa mãn điều kiện xác định).

Vậy phương trình đã cho vô nghiệm.

Xem thêm các bài tóm tắt Lý thuyết Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 1: Phương trình quy về phương trình bậc nhất một ẩn

Lý thuyết Bài 2: Phương trình bậc nhất hai ẩn và hệ hai phương trình bậc nhất hai ẩn

Lý thuyết Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn

Lý thuyết Bài 1: Bất đẳng thức

Lý thuyết Bài 2: Bất phương trình bậc nhất một ẩn

Lý thuyết Bài 1: Căn bậc hai

Đánh giá

0

0 đánh giá