Một dây chuyền của nhà máy sản xuất đá xây dựng dự định sản xuất hai loại sản phẩm A và B

453

Với giải Thực hành 3 trang 13 Chuyên đề Toán 12 Chân trời sáng tạo chi tiết trong Bài 1: Bài toán quy hoạch tuyến tính giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 12. Mời các bạn đón xem:

Giải Chuyên đề Toán 12 Bài 1: Bài toán quy hoạch tuyến tính

Thực hành 3 trang 13 Chuyên đề Toán 12: Một dây chuyền của nhà máy sản xuất đá xây dựng dự định sản xuất hai loại sản phẩm A và B. Thời gian để dây chuyền sản xuất 100 tấn sản phẩm loại A và 100 tấn sản phẩm loại B lần lượt là 2 giờ và 3 giờ. Do nhu cầu thị trường, xí nghiệp sản xuất sản lượng sản phẩm loại A không ít hơn 3 lần sản lượng sản phẩm loại B. Sản phẩm loại A cho lợi nhuận là 5 triệu đồng/100 tấn; sản phẩm loại B cho lợi nhuận 9 triệu đồng/100 tấn. Trong thời gian không quá 6 giờ làm việc của dây chuyền, cần sản xuất bao nhiêu tấn sản phẩm loại A, bao nhiêu tấn sản phẩm loại B để thu được lợi nhuận cao nhất?

Lời giải:

Gọi x, y (x ≥ 0, y ≥ 0, tính theo tấn) lần lượt là khối lượng sản phẩm loại A và sản phẩm loại B cần sản xuất. Khi đó lợi nhuận thu được là P = 0,05x + 0,09y (triệu đồng).

Vì xí nghiệp sản xuất sản lượng sản phẩm loại A không ít hơn 3 lần sản lượng sản phẩm loại B nên x ≥ 3y.

Do thời gian để làm việc của dây chuyền không quá 6 giờ nên 0,02x + 0,03y ≤ 6.

Từ đó, ta nhận được bài toán quy hoạch tuyến tính:

P = 0,05x + 0,09y → max

với ràng buộc

x3y0,02x+0,03y6x0y0.

Tập phương án Ω của bài toán là miền tam giác OAB trên hình dưới đây với các đỉnh O(0; 0), A(300; 0) và B200;2003.

Thực hành 3 trang 13 Chuyên đề Toán 12

Giá trị của P tại các đỉnh:

P(0; 0) = 0;

P(300; 0) = 0,05 ∙ 300 + 0,09 ∙ 0 = 15;

P200;2003=0,05200+0,092003=16.

Do đó, maxΩP=16, đạt được khi x = 200, y=2003.

Vậy trong thời gian không quá 6 giờ làm việc của dây chuyền, cần sản xuất 200 tấn sản phẩm loại A và 2003 tấn sản phẩm loại B để thu được lợi nhuận cao nhất.

Đánh giá

0

0 đánh giá