Số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = (4x + 4)/(x^2 + 2x + 1)

178

Với giải Bài 2 trang 45 Toán 12 Tập 1 Cánh diều chi tiết trong Bài tập cuối chương 1 trang 45 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài tập cuối chương 1 trang 45

Bài 2 trang 45 Toán 12 Tập 1: Số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y =4x + 4x2 + 2x +1 là:

A. 0.

B. 1.

C. 2.

D. 3.

Lời giải:

Đáp án đúng là: C

Tập xác định của hàm số là ℝ \{– 1}.

Ta có limx+y = limx+4x + 4x2 + 2x +1limx+4(x+ 1)(x + 1)2limx+4x + 1= 0;

limx-y = limx-4x + 4x2 + 2x +1limx-4(x+ 1)(x + 1)2limx-4x + 1= 0.

Do đó, đường thẳng y = 0 (hay trục Ox) là đường tiệm cận ngang của đồ thị hàm số.

Lại có limx1-y= limx1-4x + 1= - ,limx1+y= limx1+4x + 1= + . Do đó, đường thẳng x = – 1 là đường tiệm cận đứng của đồ thị hàm số.

Vậy số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là 2.

Đánh giá

0

0 đánh giá