Một công ty kinh doanh bất động sản có 20 căn hộ cho thuê

1.2 K

Với giải Bài 14 trang 48 Toán 12 Tập 1 Cánh diều chi tiết trong Bài tập cuối chương 1 trang 45 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài tập cuối chương 1 trang 45

Bài 14 trang 48 Toán 12 Tập 1: Một công ty kinh doanh bất động sản có 20 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 2 triệu đồng/1 tháng thì tất cả các căn hộ đều có người thuê. Nhưng cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm 200 nghìn đồng/1 tháng thì có thêm một căn hộ bị bỏ trống. Hỏi công ty nên cho thuê mỗi căn hộ bao nhiêu tiền một tháng để tổng số tiền thu được là lớn nhất?

Lời giải:

Cứ tăng thêm 200 nghìn đồng vào giá thuê một căn hộ trên một tháng thì có một căn hộ bị bỏ trống.

Gọi số lần tăng 200 nghìn đồng vào giá thuê một căn hộ trên một tháng là x (x ∈ ℕ*).

Khi đó x cũng là số căn hộ bị bỏ trống.

Tổng số tiền công ty thu được lúc này là

T(x) = (2 000 + 200x)(20 – x) = 40 000 + 2 000x – 200x2 (nghìn đồng).

Xét hàm số T(x) = 40 000 + 2 000x – 200x2 với x ∈ ℕ*.

Ta có T'(x) = 2 000 – 400x;

T'(x) = 0 ⇔ 2 000 – 400x = 0 ⇔ x = 5 (thỏa mãn).

Bảng biến thiên của hàm số T(x) như sau:

Bài 14 trang 48 Toán 12 Tập 1 Cánh diều | Giải Toán 12

Căn cứ vào bảng biến thiên trên, ta thấy hàm số T(x) đạt giá trị lớn nhất bằng 45 000 khi x = 5.

Khi đó, số tiền tăng lên khi cho thuê một căn hộ là 200 ∙ 5 = 1 000 nghìn đồng = 1 triệu đồng.

Vậy công ty nên cho thuê mỗi căn hộ 3 triệu đồng/1 tháng thì tổng số tiền thu được là lớn nhất.

Đánh giá

0

0 đánh giá