Cho tam giác ABC có chân đường cao AH nằm giữa B và C. Biết HB = 3 cm, HC = 6 cm

636

Với giải Bài 4.15 trang 80 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Luyện tập chung trang 80 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Luyện tập chung trang 80

Bài 4.15 trang 80 Toán 9 Tập 1: Cho tam giác ABC có chân đường cao AH nằm giữa B và C. Biết HB = 3 cm, HC = 6 cm, HAC^=60°. Hãy tính độ dài các cạnh (làm tròn đến cm), số đo các góc của tam giác ABC (làm tròn đến độ).

Lời giải:

Bài 4.15 trang 80 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

– Ta có: BC = BH + HC = 3 + 6 = 9 cm.

Xét ∆AHC vuông tại H, ta có:

⦁ sinHAC^=CHAC

Suy ra AC=CHsinHAC^=6sin60°=632=123=1233=43 (cm).

⦁ AH=ACcosHAC^=43cos60°=4312=23.

Xét ∆AHB vuông tại H, theo định lý Pythagore ta có:

AB2=AH2+HB2=232+32=21

Suy ra AB=21=4,582575695... cm5 cm.

– Ta có: HAC^+HCA^=90°(tổng hai góc nhọn của ∆AHC vuông tại H).

Suy ra HCA^=90°HAC^=90°60°=30°. Hay BCA^=30°.

Xét ∆AHB vuông tại H, ta có:

tanHBA^=AHHB=233, suy ra HBA^49°.

Xét ∆ABC, ta có: BAC^+ACB^+ABC^=180° (định lý tổng ba góc trong tam giác)

Suy ra BAC^=180°CAB^CBA^180°30°49°=101°.

Đánh giá

0

0 đánh giá