HĐ 2 trang 41 Toán 7 Tập 1 | Kết nối tri thức Giải Toán lớp 7

1.8 K

Với giải HĐ 2 trang 41 Toán lớp 7 Kết nối tri thức với cuộc sống chi tiết trong Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:

Giải bài tập Toán lớp 7 Bài 8: Góc ở vị trí đặc biệt. Tia phân giác của một góc

HĐ 2 trang 41 Toán lớp 7: Cho ba tia Ox, Oy, Oz như Hình 3.1, trong đó Ox và Oy là hai tia đối nhau.

a) Em hãy nhận xét về quan hệ về đỉnh, về cạnh của hai góc xOz và zOy.

b) Đo rồi tính tổng số đo góc hai góc xOz và zOy.

Phương pháp giải:

a) Xác định đỉnh, cạnh của hai góc được đánh dấu rồi nhận xét.

b) Đo góc: đặt đỉnh của góc trùng với gốc của thước, 1 cạnh của góc trùng với vạch 0, cạnh còn lại của góc trùng với vạch nào thì đó là số đo góc.

Lời giải:

a) Hai góc xOz và zOy có chung đỉnh O, chung cạnh là tia Oz, hai cạnh Ox và Oy là hai tia đối nhau.

b) Dùng thước đo góc ta đo được: Góc zOy bằng 40o; góc xOz bằng 140o.

Tổng số đo hai góc zOy và xOz là: 40o + 140o = 180o.

Lý thuyết Góc ở vị trí đặc biệt

a) Hai góc kề bù

• Định nghĩa: Hai góc có một cạnh chung, hai cạnh còn lại là hai tia đối nhau được gọi là hai góc kề bù.

• Tính chất: Hai góc kề bù có tổng số đo bằng 180°.

Ví dụ:

+ Góc xOy^ và yOz^ có cạnh Oy chung; Ox và Oz là hai tia đối nhau. Do đó xOy^ và yOz^ được gọi là hai góc kề bù.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Vì xOy^ và yOz^ là hai góc kề bù nên xOy^+yOz^=180°.

Chú ý:

• Hai góc kề bù được hiểu là hai góc vừa kề nhau, vừa bù nhau. Trong đó:

- Hai góc kề nhau là hai góc có một cạnh chung và hai cạnh còn lại nằm khác phía nhau đối với đường thẳng chứa cạnh chung đó.

Ví dụ: Trong hình vẽ dưới đây, góc mOt và góc nOt là hai góc kề nhau.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

- Hai góc bù nhau là hai góc có tổng số đo bằng 180°.

Ví dụ: Trong hình vẽ dưới đây, có ABC^+BCD^=60°+120°=180°. Ta nói ABC^ và BCD^ là hai góc bù nhau.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

• Nếu điểm M nằm trong góc xOy thì ta nói tia OM nằm giữa hai cạnh (hai tia) Ox và Oy của góc xOy. Khi đó ta có: xOM^+MOy^=xOy^

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

b) Hai góc đối đỉnh

• Định nghĩa: Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.

• Tính chất: Hai góc đối đỉnh thì bằng nhau.

Ví dụ:

Hai đường thẳng xx'yy' cắt nhau tại O. Khi đó Ox và Ox' là hai tia đối nhau; Oy và Oy' là hai tia đối nhau. Nên ta có các cặp góc đối đỉnh là: xOy^ và x'Oy'^xOy'^ và x'Oy^.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

+ Có xOy^ và x'Oy'^ là hai góc đối đỉnh thì xOy^=x'Oy'^;

Ta lại có xOy'^ và x'Oy^ là hai góc đối đỉnh thì xOy'^=x'Oy^.

Chú ý:

• Hai đường thẳng xx'yy' cắt nhau và trong các góc tạo thành có một góc vuông được gọi là hai đường thẳng vuông góc. Kí hiệu là: xx'yy'.

Ví dụ: Hai đường thẳng xx'yy' cắt nhau tại O sao cho xOy^=90° thì xx'yy'.

Góc ở vị trí đặc biệt. Tia phân giác của một góc (Lý thuyết + Bài tập Toán lớp 7) – Kết nối tri thức (ảnh 1)

Xem thêm các bài giải Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

HĐ 1 trang 41 Toán lớp 7: Quan sát hình vẽ bên. Em hãy nhận xét về mối quan hệ về đỉnh, về cạnh của hai góc được đánh dấu...

Đánh giá

0

0 đánh giá