Giải SBT Toán 11 trang 22 Tập 2 Chân trời sáng tạo

787

Với lời giải SBT Toán 11 trang 22 Tập 2 chi tiết trong Bài 4: Phương trình, bất phương trình mũ và lôgarit sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit

Bài 1 trang 22 SBT Toán 11 Tập 2: Giải các phương trình sau:

a) 32x+1=127;

b) 52x = 10;

c) 3x = 18;

d) 0,2x1=1125;

e) 53x = 25x – 2;

g) 18x+1=132x1.

Lời giải:

a) 32x + 1 = 3– 3

⇔ 2x + 1= –3 (do 3 > 1)

⇔ x = – 2.

Vậy phương trình có nghiệm là x = 2.

b) 52x =10

⇔ 2x = log5 10

⇔ x = 12log510.

Vậy phương trình có nghiệm là x = 12log510.

c) 3x = 18 ⇔ x = log3 18

Vậy phương trình có nghiệm là x = log3 18.

d) 0,2x1=1125

51x=532

⇔ 1 - x = 32 (do 5 > 1)

⇔ x = 52

Vậy phương trình có nghiệm là x = 52.

e) 53x = 25x–2

⇔ 53x = 52x–4

⇔ 3x = 2x – 4 (do 5 > 1)

⇔ x = – 4.

Vậy phương trình có nghiệm là x = – 4.

g) 18x+1=132x1

23x+1=25x1

23(x+1)=25x+5

⇔ –3x – 3 = –5x + 5 (do 2 > 1)

⇔ 2x = 8 ⇔ x = 4.

Vậy phương trình có nghiệm là x = 4.

Bài 2 trang 22 SBT Toán 11 Tập 2: Giải các phương trình sau:

a) log3 (2x - 1) = 3;

b) log49 x = 0,25;

c) log2 (3x + 1) = log2 (2x - 4);

d) log5 (x - 1) + log5 (x - 3) = log5 (2x + 10);

e) log x + log (x – 3) = 1;

g) log2 (log81 x) = -2.

Lời giải:

a) Điều kiện: 2x – 1 > 0

Ta có: log3 (2x - 1) = 3

⇔ 2x - 1 = 33 = 27

⇔ x = 14 (nhận)

Vậy tập nghiệm của phương trình là: S = {14}.

b) Điều kiện: x > 0

Ta có: log49 x = 0,25

log72x=14

12log7x=14

log7x=12

⇔ x = 7 (nhận)

Vậy tập nghiệm của phương trình là: S = {7}.

c) Điều kiện: x>0log81x>0x>0x>810=1x>1

Ta có: log2 (3x + 1) = log2 (2x - 4)

⇔ 3x + 1 = 2x – 4 (do 2 >1)

⇔ x = – 5 (loại).

Vậy phương trình đã cho vô nghiệm.

d) Điều kiện: x1>0x3>02x+10>0x>1x>3x>5x>3

Ta có: log5 (x - 1) + log5 (x - 3) = log5 (2x + 10)

log5(x1)(x3)=log5(2x+10)

log5x24x+3=log5(2x+10)

⇔ x2 ­– 4x + 3 = 2x + 10 (do 2 >1)

⇔ x2 – 6x – 7 = 0.

⇔ x = 7 (nhận) hoặc x = –1 (loại)

Kết hợp điều kiện, vậy tập nghiệm của phương trình là: S = {7}.

e) Điều kiện: x>0x3>0x>0x>3x>3

Ta có: log x + log (x – 3) = 1

⇔ log [x(x – 3)] = 1

⇔ log (x2 – 3x)=1

⇔ x2 – 3x – 10 = 0 (do 10 >1)

⇔ x = 5 (nhận) hoặc x = –2 (loại)

Kết hợp điều kiện, vậy tập nghiệm của phương trình là: S = {5}.

g) Điều kiện: x>0log81x>0x>0x>810=1x>1

Ta có: log2 (log81 x) = -2

⇔ log81 x = 2-2 ⇔ x = 8122 = 3 (nhận)

Kết hợp điều kiện, vậy tập nghiệm của phương trình là: S = {3}.

Bài 3 trang 22 SBT Toán 11 Tập 2: Giải các bất phương trình sau:

a) 4x<22;

b) 13x119;

c) 5.12x<40;

d) 42x < 8x –1;

e) 152x125x;

g) 0,25x – 2 > 0,5x + 1.

Lời giải:

a) Ta có: 4x<22

22x<22

2x<log222

2x<32

x<34.

Vậy tập nghiệm của bất phương trình là: S = ;34.

b) Ta có: 13x119

312(x1)32

12(x1)2 (do 3 > 1)

⇔ x ≤ 5

Vậy tập nghiệm của bất phương trình là: S = (-∞; 5].

c) 5.12x<40

⇔ 2-x < 8

⇔ 2-x < 23

⇔ x > -3

Vậy tập nghiệm của bất phương trình là: S = (-3; +∞).

d) 42x < 8x – 1

⇔ 24x < 23x – 3

⇔ 4x < 3x – 3 (do 2 > 1)

⇔ x < – 3.

Vậy tập nghiệm của bất phương trình là: S = (-∞; -3).

e) 152x125x

⇔ 5x-2 ≤ 5-2x

⇔ x - 2 ≤ -2x (do 5 >1)

⇔ 3x ≤ 2 ⇔ x ≤ 23

Vậy tập nghiệm của bất phương trình là: S = ; 23.

g) 0,25x – 2 > 0,5x + 1

⇔ 0,52(x - 2) > 0,5x + 1

⇔ 2(x –2) < x +1 (do 0 < 0,5 < 1)

⇔ x < 5.

Vậy tập nghiệm của bất phương trình là: S = (-∞; 5).

Bài 4 trang 22 SBT Toán 11 Tập 2: Giải các bất phương trình sau:

a) log3 (x + 4) < 2;

b) log12x4;

c) log0,25(x1)1;

d) log5(x224x)2;

e) 2log14(x+1)log14(3x+7);

g) 2log3(x+1)1+log3(x+7).

Lời giải:

a) Điều kiện: x > –4

Ta có: log3 (x + 4) < 2 ⇔ x + 4 < 9 ⇔ x < 5

Kết hợp điều kiện, vậy tập nghiệm của bất phương trình là: S = (–4; 5).

b) Điều kiện: x > 0

Ta có: log12x4x124x116

Kết hợp điều kiện, vậy tập nghiệm của bất phương trình là: S = 0;116.

c) Điều kiện: x > 1

Ta có: log0,25 (x - 1) ≤ -1

⇔ x - 1 ≥ (0,25)-1 (do 0 < 0, 5 < 1)

⇔ x - 1 ≥ 4

⇔ x ≥ 5

Kết hợp điều kiện, vậy tập nghiệm của bất phương trình là: S = 5; +.

d) Điều kiện: x224x>0x<0x>24

Ta có: log5(x224x)2

⇔ x2 - 24x ≥ 25

⇔ x2 - 24x - 25 ≥ 0 (Do 5 > 1)

x1x25

Kết hợp điều kiện, vậy tập nghiệm của bất phương trình là: S = ;125;+.

e) Điều kiện: x+1>03x+7>0x>1x>73x>1

Ta có: 2log14(x+1)log14(3x+7)

log3(x+1)2log33+log3(x+7)log14(x+1)2log14(3x+7)

⇔ x2 + 2x + 1 ≤ 3x + 7 (do cơ số 0<12<1)

⇔ x2 - x - 6 ≤ 0 ⇔ -2 ≤ x ≤ 3

Kết hợp điều kiện, vậy tập nghiệm của phương trình là: S = (−1; 3].

g) Điều kiện: x+1>0x+7>0x>1x>7x>1

Ta có: 2log3(x+1)1+log3(x+7)

log3(x+1)2log33+log3(x+7)

log3(x+1)2log33(x+7)

(x+1)23x+21 (do cơ số 2 > 1)

⇔ (x + 1)2 ≤ 3x + 21

⇔ x2 + 2x + 1 ≤ 3x + 21

⇔ x2 - x - 20 ≤ 0

⇔ -4 ≤ x ≤ 5

Kết hợp điều kiện, vậy tập nghiệm của phương trình là: S = (–1; 5].

Bài 5 trang 22 SBT Toán 11 Tập 2: Giải các phương trình sau:

a) 4x – 5.2x + 4 = 0;

b) 19x2.13x127=0;

Lời giải:

a) 4x – 5.2x + 4 = 0;

Đặt t = 2x (t > 0).

Khi đó: t2 – 5t + 4 = 0 ⇔ t=4t=1

=> 2x=42x=1x=log24=2x=log21=0.

Kết hợp với điều kiện, vậy phương trình có nghiệm x = 0 hoặc x = 2.

b) 19x2.13x127=0

132x213x13127=0

132x613x27=0

Đặt t = 13x (t > 0).

Khi đó, ta có: t2 - 6t + 27 ⇔ t = 9 (nhận) hoặc t = –3 (loại)

Do đó 13x = 9 ⇔ 3–x = 32 ⇔ x = –2.

Vậy nghiệm của phương trình là x = –2.

Đánh giá

0

0 đánh giá