Với giải Bài 10 trang 23 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 4: Phương trình, bất phương trình mũ và lôgarit giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit
Bài 10 trang 23 SBT Toán 11 Tập 2: Đồng vị phóng xạ Uranium - 235 (thường được sử dụng trong điện hạt nhân) có chu kỳ bán rã là T = 703 800 000 năm. Theo đó, nếu ban đầu có 100 gam Uranium - 235 thì sau t năm, do bị phân rã, lượng Uranium - 235 còn lại được tính bởi công thức M = (g). Sau thời gian bao lâu thì lượng Uranium-235 còn lại bằng 90% so với ban đầu?
Lời giải:
Lượng Uranium - 235 còn lại bằng 90% so với ban đầu là 90 g.
Khi đó M = 90 g, ta có phương trình:
= 0,9
⇔ ⇔ t = (năm).
Vậy sau khoảng 106 979 777 năm thì lượng Uranium-235 còn lại bằng 90% so với ban đầu.
Xem thêm lời bài sách bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 1 trang 22 SBT Toán 11 Tập 2: Giải các phương trình sau:...
Bài 2 trang 22 SBT Toán 11 Tập 2: Giải các phương trình sau:...
Bài 3 trang 22 SBT Toán 11 Tập 2: Giải các bất phương trình sau:...
Bài 4 trang 22 SBT Toán 11 Tập 2: Giải các bất phương trình sau:...
Bài 7 trang 23 SBT Toán 11 Tập 2: Tìm tập xác định của các hàm số:...
Xem thêm các bài giải SBT Toán 11 Chân trời sáng tạo hay, chi tiết khác: