Tìm tập xác định của các hàm số: a) y = f(x) = căn (4-x^2) + 1/ căn Log 2 (x)

537

Với giải Bài 7 trang 23 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 4: Phương trình, bất phương trình mũ và lôgarit giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit

Bài 7 trang 23 SBT Toán 11 Tập 2: Tìm tập xác định của các hàm số:

a) y = f(x) = 42x+1log2x;

b) y = f(x) = log12(x2).

Lời giải:

a) y = f(x) = 42x+1log2x

Điều kiện xác định:

42x0log2x>02x4x>20xlog24x>1x2x>1

Tập xác định: D = (1; 2].

b) y = f(x) = log12(x2)

Điều kiện xác định:

x2>0log12(x2)>0x>2x2120

=> x>2x32<x3

Tập xác định: D = (2; 3].

Đánh giá

0

0 đánh giá