Với giải sách bài tập Toán 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:
Giải SBT Toán lớp 7 Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
Giải SBT Toán 7 trang 63 Tập 1
Tính thể tích của hai hình lăng trụ đứng tứ giác sau khi cắt.
Lời giải
Quan sát Hình 6 ta thấy hai hình lăng trụ vừa cắt là hai hình lăng trụ đứng tứ giác có đáy là hình thang.
Hình lăng trụ đứng phía trên có chiều cao h1 = 3 cm và đáy là hình thang có các kích thước là 4 cm (đáy lớn), 2 cm (đáy bé), 3 cm (chiều cao hình thang).
Diện tích đáy của hình lăng trụ đứng ở phía trên là: S1 = (4 + 2) . 3 : 2 = 9 (cm2).
Thể tích của hình lăng trụ đứng ở phía trên là: V1 = S1 . h1 = 9 . 3 = 27 (cm3).
Thể tích của hình hộp chữ nhật là: V = 3 . 3 . 7 = 63 (cm3).
Thể tích của hình lăng trụ đứng ở phía dưới là: V2 = V – V1 = 63 – 27 = 36 (cm3).
Lời giải
Cách 1:
Quan sát Hình 7 ta thấy mô hình ngôi nhà gồm hai hình lăng trụ đứng (lăng trụ đứng tam giác và lăng trụ đứng tứ giác) ghép với nhau cùng có chiều cao là h = 17 cm.
+ Hình lăng trụ đứng tứ giác có đáy là hình chữ nhật với các kích thước là 45 cm và 20 cm nên diện tích đáy này là: S1 = 45 . 20 = 900 (cm2).
Thể tích hình lăng trụ đứng tứ giác là: V1 = S1 . h = 900 . 17 = 15 300 (cm3).
+ Hình lăng trụ đứng tam giác có đáy là tam giác có chiều cao là 18 cm và cạnh đáy ứng với chiều cao đó có độ dài là 45 cm nên diện tích đáy này là: S2 = . 18 . 45 = 405 (cm2).
Thể tích hình lăng trụ đứng tam giác là: V2 = S2 . h = 405 . 17 = 6 885 (cm3).
Vậy thể tích của mô hình ngôi nhà là: V = V1 + V2 = 15 300 + 6 885 = 22 185 (cm3).
Cách 2:
Có thể xem mô hình ngôi nhà là hình lăng trụ có đáy là hình gồm một tứ giác và tam giác ghép lại và chiều cao h = 17 cm.
Diện tích mặt đáy là: S = 45 . 20 + . 18 . 45 = 1 305 (cm2).
Thể tích của mô hình ngôi nhà là: V = S . h = 1 305 . 17 = 22 185 (cm3).
Bài 3 trang 63 Sách bài tập Toán 7 Tập 1: Một khối gỗ có kích thước như Hình 8 (đơn vị dm).
a) Tính thể tích của khối gỗ.
b) Tính diện tích toàn phần của khối gỗ.
Lời giải
a) Quan sát Hình 8 ta thấy khối gỗ được ghép bởi hai khối hộp chữ nhật.
+ Khối hộp chữ nhật ở phía dưới có kích thước là 10 dm, 8 dm và 10 dm, do đó thể tích của khối hộp chữ nhật phía dưới là: V1 = 10 . 8 . 10 = 800 (dm3).
+ Khối hộp chữ nhật ở phía trên có:
- Chiều dài là 10 dm;
- Chiều rộng là: 10 – 2 – 2 = 6 (dm);
- Chiều cao là: 12 – 8 = 4 (dm).
Thể tích của khối hộp chữ nhật ở phía trên là: V2 = 10 . 6 . 4 = 240 (dm3).
Vậy thể tích của khối gỗ là V = V1 + V2 = 800 + 240 = 1 040 (dm3).
b) Có thể xem khối gỗ là hình lăng trụ có đáy hình gồm 2 hình chữ nhật ghép lại với nhau và chiều cao là h = 10 dm.
Chu vi đáy là: CVđáy = 10 + 8 + 2 + 4 + 6 + 4 + 2 + 8 = 44 (dm).
Diện tích xung quanh của khối gỗ là: Sxq = CVđáy . h = 44 . 10 = 440 (dm2).
Diện tích hai mặt đáy là: S2đáy = 2 . (10 . 8 + 6 . 4) = 208 (dm2).
Diện tích toàn phần của khối gỗ là: Stp = Sxq + S2đáy = 440 + 208 = 648 (dm2).
Lời giải
Diện tích đáy hình thoi của khối lăng trụ là: Sđ = . 16 . 18 = 144 (cm2).
Thể tích của hình lăng trụ có đáy là hình thoi là: V = 144 . 10 = 1 440 (cm3).
Lỗ hình hộp chữ nhật có kích thước hai cạnh đáy là 2 cm và 6 cm và chiều cao chính bằng chiều cao của hình lăng trụ có đáy là hình thoi và là 10 cm. Do đó, thể tích cái lỗ hình hộp chữ nhật là: Vl = 2 . 6 . 10 = 120 (cm3).
Thể tích còn lại của khối thép là: Vcl = V – Vl = 1 440 – 120 = 1 320 (cm3).
Lời giải
Từ Hình 10, ta thấy đáy của hình lăng trụ là một tứ giác, ta chia tứ giác đó thành 2 tam giác.
Tam giác ABC có chiều cao BM = 3 m và cạnh đáy AC = 5 m, diện tích tam giác ABC là SABC = BM . AC = . 3 . 5 = (m2).
Tam giác ADC có chiều cao DN = 3 m và cạnh đáy AC = 5 m, diện tích tam giác ADC là SADC = DN . AC = . 3 . 5 = (m2).
Diện tích đáy của hình lăng trụ đã cho là: Sđ = SABC + SADC = + = 15 (m2).
Thể tích của hình lăng trụ là: V = Sđ . h = 15 . 7 = 105 (m3).
Lời giải
Bể cá có dạng hình hộp chữ nhật có các kích thước là 20 cm, 50 cm, 25 cm.
Thể tích của bể cá là: 20 . 50 . 25 = 25 000 (cm3).
Đổi: 6,25 lít = 6,25 dm3 = 6 250 cm3.
Thể tích phần bể không chứa nước là: 25 000 – 6 250 = 18 750 (cm3).
Phần bể không chứa nước có dạng hình hộp chữ nhật có kích thước đáy giống bể cá và chiều cao chính là khoảng cách từ mực nước đến miệng bể.
Vậy khoảng cách từ mực nước đến miệng bể là: (cm).
Giải SBT Toán 7 trang 64 Tập 1
Tính thể tích của khối bê tông.
Lời giải
Thể tích của hình lăng trụ đứng tam giác là: V1 = (dm3).
Phần lỗ khoét có dạng hình hộp chữ nhật với các kích thước là 3 dm, 6 dm và 14 dm nên thể tích cái lỗ là: V2 = 3 . 6 . 14 = 252 (dm3).
Thể tích của khối bê tông là: V = V1 – V2 = 1 456 – 252 = 1 204 (dm3).
Lời giải
Thể tích của một khúc gỗ dạng hình hộp chữ nhật là: V1 = 0,5 . 0,5 . 8 = 2 (m3).
30 khúc gỗ có thể tích là: 2 . 30 = 60 (m3).
Vậy phần không gian mà 30 khúc gỗ chiếm có thể tích là 60 m3.
Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác
Bài 4: Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
Bài 1: Các góc ở vị trí đặc biệt
Lý thuyết Diện tích xung quanh và thể tích của hình lăng trụ đứng tam giác, lăng trụ đứng tứ giác
1. Diện tích xung quanh của hình lăng trụ đứng
Diện tích xung quanh của hình lăng trụ đứng bằng chu vi đáy nhân với chiều cao.
Sxq = Cđáy . h
(Cđáy là chu vi đáy, h là chiều cao).
Chú ý: Diện tích toàn phần của hình lăng trụ đứng bằng tổng diện tích xung quanh và diện tích hai đáy.
Ví dụ: Tính diện tích xung quanh và diện tích toàn phần của hình lăng trụ đứng tam giác ABC.DEF sau:
Hướng dẫn giải
Diện tích xung quanh của hình lăng trụ đứng tam giác ABC.DEF là:
Sxq = Cđáy . h = (3 + 4 + 5 ) . 7 = 84 (cm2).
Diện tích một đáy của hình lăng trụ đứng tam giác ABC.DEF là:
Sđáy = (cm2)
Diện tích toàn phần của hình lăng trụ đứng tam giác ABC.DEF là:
84 + 2. 6 = 96 (cm2)
Vậy diện tích xung quanh và diện tích toàn phần của hình lăng trụ đứng tam giác ABC.DEF lần lượt là 84 cm2 và 96 cm2.
2. Thể tích của hình lăng trụ đứng
Thể tích của hình lăng trụ đứng bằng diện tích đáy nhân với chiều cao.
V = Sđáy . h
(Sđáy là diện tích đáy, h là chiều cao).
Ví dụ: Tính thể tích của hình lăng trụ đứng tứ giác có đáy là hình chữ nhật chiều rộng là 3 cm, chiều dài là 4 cm, và chiều cao của lăng trụ là 5,5 cm.
Hướng dẫn giải
Ta có đáy là hình chữ nhật nên diện tích đáy là:
Sđáy = 3 . 4 = 12 (cm2)
Thể tích của hình lăng trụ đứng tứ giác đó là:
V = Sđáy . h = 12 . 5,5 = 66 (cm3).
Vậy thể tích của hình lăng trụ đứng tứ giác đó là 66 cm3.
3. Diện tích xung quanh và thể tích của một số hình khối trong thực tiễn
Ví dụ: Một tấm lịch để bàn có dạng hình lăng trụ đứng tam giác. Tính diện tích xung quanh của tấm lịch.
Hướng dẫn giải
Diện tích xung quanh của tấm lịch để bàn là:
Sxq = Cđáy . h = (7 + 15 + 15) . 16 = 592 (cm2)
Vậy diện tích xung quanh của tấm lịch là 592 cm2.
Ví dụ: Để thi công một con dốc, người ta đúc một khối bê tông hình lăng trụ đứng tam giác có kích thước như hình sau.
Hãy tính thể tích của khối bê tông.
Hướng dẫn giải
Diện tích đáy của hình lăng trụ đứng tam giác là:
Sđáy = = 84 (m2).
Thể tích của khối bê tông là:
V = Sđáy . h = 84 . 22 = 1 848 (m3).
Vậy thể tích của khối bê tông là 1 848 m3.