Cho tam giác ABC vuông tại A. Tia phân giác của góc A cắt cạnh huyền BC tại M

699

Với giải Bài 7 trang 69 SBT Toán lớp 8 Chân trời sáng tạo chi tiết trong Bài 3: Các trường hợp đồng dạng của hai tam giác vuông giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 3: Các trường hợp đồng dạng của hai tam giác vuông

Bài 7 trang 69 SBT Toán 8 Tập 2: Cho tam giác ABC vuông tại A. Tia phân giác của A^ cắt cạnh huyền BC tại M. Qua M kẻ đường thẳng vuông góc với BC và cắt AC tại N. Chứng minh rằng:

a) ∆MNC ᔕ ∆ABC.

b) MN = MB.

Lời giải:

Cho tam giác ABC vuông tại A. Tia phân giác của góc A cắt cạnh huyền BC tại M

a) Xét ∆MNC vuông tại M và ∆ABC vuông tại A có C^ chung.

Do đó ∆MNC ᔕ ∆ABC (g.g).

b) Ta có ∆MNC ᔕ ∆ABC, suy ra MNAB=MCAC (1)

Xét ∆ABC có AM là phân giác của A^ có

MBMC=ABAC, suy ra MBAB=MCAC (2)

Từ (1) và (2), suy ra MBAB=MNAB.

Do đó MN = MB (đpcm).

Đánh giá

0

0 đánh giá