Xét tính liên tục của các hàm số sau: a) f(x) = tan / căn (1=x^2)

322

Với giải Bài 6 trang 90 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 3: Hàm số liên tục giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 3: Hàm số liên tục

Bài 6 trang 90 SBT Toán 11 Tập 1: Xét tính liên tục của các hàm số sau:

a) fx=tanx1x2;

b) fx=1sinx.

Lời giải:

a) Điều kiện: 1 ‒ x2 > 0 ⇔ ‒1 < x < 1.

Hàm số y=1x2 xác định và liên tục trên (‒1; 1).

Hàm số y = tanx xác định và liên tục trên các khoảng π2+;π2+ (với k ∈ ℤ)

Do 1;1π2;π2 nên hàm số y = tanx xác định và liên tục trên (‒1; 1).

Suy ra, hàm số fx=tanx1x2 liên tục trên (‒1; 1).

b) Điều kiện: sinx ≠ 0 ⇔ x ≠ kπ (k ∈ ℤ)

Do đó hàm số liên tục trên các khoảng ;k+1π với k ∈ ℤ.

Đánh giá

0

0 đánh giá