Với giải sách bài tập Toán 11 Bài 2: Giới hạn của hàm số sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 2: Giới hạn của hàm số
Bài 1 trang 84 SBT Toán 11 Tập 1: Sử dụng định nghĩa, tìm các giới hạn sau:
a)
b)
c)
Lời giải:
a) Giả sử (xn) là dãy số bất kì thỏa mãn xn ≠ –1 với mọi n và limxn = ‒1.
Ta có:
Vậy
b) Giả sử (xn) là dãy số bất kì thỏa mãn , xn ≠ 2 với mọi n và limxn = 2.
Ta có:
Vậy
c) Giả sử (xn) là dãy số bất kì thỏa mãn limxn = +∞.
Ta có: = =
Vậy
Bài 2 trang 84 SBT Toán 11 Tập 1: Tìm các giới hạn sau:
a)
b)
c)
d)
Lời giải:
a)
b)
= (5.2 ‒ 1)(2 ‒ 4.2) = ‒54.
c)
d)
Bài 3 trang 84 SBT Toán 11 Tập 1: Tìm các giới hạn sau:
a)
b)
c)
d)
e)
g)
Lời giải:
a)
b)
c)
d)
e)
g)
Bài 4 trang 84 SBT Toán 11 Tập 1: Cho hai hàm số f(x) và g(x) có và Tìm các giới hạn:
a)
b)
Lời giải:
a)
b)
Bài 5 trang 84 SBT Toán 11 Tập 1: Cho hai hàm số f(x) và g(x) có và
Tìm
Lời giải:
Ta có
Suy ra
Bài 6 trang 84 SBT Toán 11 Tập 1: Cho hàm số
Tìm các giới hạn và
Lời giải:
Ta có:
⦁
⦁
⦁ Vì nên
Bài 7 trang 84 SBT Toán 11 Tập 1: Cho hàm số
Tìm giá trị của tham số a sao cho tồn tại giới hạn
Lời giải:
Ta có:
Để tồn tại thì
Tức là suy ra a = 8.
Bài 8 trang 85 SBT Toán 11 Tập 1: Mỗi giới hạn sau có tồn tại không? Nếu có, hãy tìm giới hạn đó.
a)
b)
Lời giải:
a) Ta có:
⦁
⦁
Do nên tồn tại giới hạn và
b) Ta có:
⦁
⦁
Do nên không tồn tại giới hạn
Bài 9 trang 85 SBT Toán 11 Tập 1: Tìm các giới hạn sau:
a)
b)
c)
d)
Lời giải:
a)
b)
c) Với x < 0 thì nên ta có:
d)
Bài 10 trang 85 SBT Toán 11 Tập 1: Tính các giới hạn sau:
a)
b)
c)
Lời giải:
a)
Ta có và
Suy ra
b)
Ta có và
Suy ra
c)
Ta có và
Suy ra
Bài 11 trang 85 SBT Toán 11 Tập 1: Tìm giá trị của các tham số a và b, biết rằng:
a)
b)
Lời giải:
a) Do nên để tồn tại giới hạn hữu hạn trước hết ta phải có hay 2a + b = 0, suy ra b = ‒2a.
Khi đó,
Suy ra a = 5 và b = ‒10.
b) Do nên để tồn tại giới hạn hữu hạn trước hết ta phải có hay a + b = 0, suy ra b = ‒a.
Khi đó,
Suy ra hay a = 6, suy ra b = ‒6.
Bài 12 trang 85 SBT Toán 11 Tập 1: Trong mặt phẳng toạ độ Oxy, cho điểm M(t, t2), t > 0, nằm trên đường parabol y = x2. Đường trung trực của đoạn thẳng OM cắt trục tung tại N. Điểm N dần đến điểm nào khi điểm M dần đến điểm O?
Lời giải:
Trung điểm của đoạn thẳng OM là
Đường trung trực của OM nhận làm vectơ pháp tuyến và đi qua điểm nên có phương trình .
Do đường trung trực của đoạn thẳng OM cắt trục tung tại N nên thay x = 0 vào phương trình của d, ta nhận được .
Suy ra
Điểm M dần đến điểm O khi t dần đến 0+. Ta có .
Suy ra khi điểm M dần đến điểm O thì điểm N dần đến điểm .
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Giới hạn của dãy số
Bài 2: Giới hạn của hàm số
Bài 3: Hàm số liên tục
Bài tập cuối chương 3
Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
Bài 2: Hai đường thẳng song song
Lý thuyết Giới hạn của hàm số
1. Giới hạn hữu hạn của hàm số tại một điểm
Cho khoảng K chứa điểm và hàm số xác định trên K hoặc trên . Ta nói hàm số có giới hạn hữu hạn là số L khi dần tới nếu với dãy số bất kì, và , ta có
Kí hiệu hay , khi .
2. Các phép toán về giới hạn hữu hạn của hàm số
a, Nếu và thì
b, Nếu với mọi và thì và .
* Nhận xét:
(, nếu tồn tại )
3. Giới hạn một phía
Cho hàm số xác định trên khoảng .
Ta nói có giới hạn bên phải là số L khi nếu với dãy số bất kì, và ta có , kí hiệu .
Cho hàm số xác định trên khoảng .
Ta nói có giới hạn bên phải là số L khi nếu với dãy số bất kì, và ta có , kí hiệu .
*Chú ý:
thì không tồn tại .
Các phép toán về giới hạn hữu hạn của hàm số ở Mục 2 vẫn đúng khi ta thay bằng hoặc .
4. Giới hạn hữu hạn của hàm số tại vô cực
Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn là số L khi nếu với dãy số bất kì và ta có , kí hiệu hay khi .
Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn là số L khi nếu với dãy số bất kì và ta có , kí hiệu hay khi .
* Nhận xét:
- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
- Với c là hằng số, k là một số nguyên dương ta có:
5. Giới hạn vô cực của hàm số tại một điểm
- Cho hàm số xác định trên khoảng .
Ta nói hàm số có giới hạn bên phải là khi về bên phải nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu
Ta nói hàm số ó giới hạn bên phải là khi về bên trái nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu
Các giới hạn một bên, được định nghĩa tương tự.
* Chú ý:
- k là số nguyên dương chẵn.
- k là số nguyên dương lẻ.
Giới hạn vô cực
Nếu và hoặc thì được tính như sau:
Các quy tắc trên vẫn đúng khi thay thành (hoặc ,)