Chứng minh các đẳng thức lượng giác sau

1 K

Với giải Bài 3 trang 34 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 1 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài tập cuối chương 1

Bài 3 trang 34 SBT Toán 11 Tập 1: Chứng minh các đẳng thức lượng giác sau:

a) sin2x+π8sin2xπ8=22sin2x;

b) sin2y + 2cosxcosycos(x ‒ y) = cos2x + cos2(x ‒ y).

Lời giải:

a) sin2x+π8sin2xπ8

=sinx+π8+sinxπ8sinx+π8sinxπ8

=2sinxcosπ82cosxsinπ8=2sinxcosx2cosπ8sinπ8

=sin2xsinπ4=22sin2x

b) sin2y + 2cosxcosycos(x ‒ y) = cos2x + cos2(x ‒ y).

⇔ 2cosxcosycos(x ‒ y) ‒ cos2(x ‒ y) = cos2x ‒ sin2y

Ta có:

VT = 2cosxcosycos(x ‒ y) ‒ cos2(x ‒ y)

= cos(x – y)[2cosxcosy – cos(x – y)]

= cos(x – y)[2cosxcosy – (cosxcosy + sinxsiny)]

= cos(x – y)(cosxcosy – sinxsiny)

=cosxycosx+y=12cos2y+cos2x

=1212sin2y+2cos2x1=cos2xsin2y=VP.

Đánh giá

0

0 đánh giá