Cho hàm số y = tanx với x thuộc (-3pi/3;-pi/2) hợp (-pi/2;pi/2

1.1 K

Với giải Bài 5 trang 27 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 4: Hàm số lượng giác và đồ thị giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 4: Hàm số lượng giác và đồ thị

Bài 5 trang 27 SBT Toán 11 Tập 1Cho hàm số y = tanx với x3π2;π2π2;π2.

a) Vẽ đồ thị hàm số đã cho.

b) Tìm các giá trị của x7π4;π4 sao cho 3tanx+π4+1=0.

c) Tìm các giá trị của x5π6;π6 sao cho tan2x+π633.

Lời giải:

a) Ta có bảng giá trị của hàm số y = tanx trên đoạn π3;π3 như sau:

Cho hàm số y = tanx trang 27 SBT Toán 11 Tập 1

Bằng cách tương tự, lấy nhiều điểm M(x; tanx) với xπ2;π2 và nối lại, ta được đồ thị của hàm số y = tanx trên khoảng π2;π2.

Vì hàm số y = tanx tuần hoàn với chu kì π, nên để vẽ đồ thị hàm số y = tanx trên 3π2;π2π2;π2, ta vẽ đồ thị của hàm số trên khoảng π2;π2, sau đó lặp lại đồ thị trên khoảng này trên 3π2;π2.

Ta có đồ thị của hàm số y=tanx với x3π2;π2π2;π2 như sau:

Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Hàm số lượng giác và đồ thị (ảnh 5)

b) Ta có 3tanx+π4+1=0 khi và chỉ khi tanx+π4=33.

Đặt t=x+π4. Vì 7π4xπ4 nên 3π2tπ2, hay t3π2;π2.

Hàm số y = tant xác định khi tπ2+kπ,k.

Kết hợp với điều kiện t3π2;π2, suy ra t3π2;π2π2;π2.

Đồ thị hàm số y = tant với t3π2;π2π2;π2 như sau:

Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Hàm số lượng giác và đồ thị (ảnh 4)

Từ đồ thị hàm số trên, ta có:

tant=33 khi và chỉ khi t=7π6 hoặc t=π6.

Hay x+π4=7π6 hoặc x+π4=π6

Do đó x=17π12 hoặc x=5π12.

c) Đặt t=2x+π6. Vì 5π6xπ6 nên 3π2tπ2, hay t3π2;π2.

Tương tự câu b, từ đồ thị hàm số trên, ta có:

tant33 khi và chỉ khi 7π6t<π2 hoặc π6t<π2.

Hay 7π62x+π6<π2 hoặc π62x+π6<π2

Do đó 2π3x<π3 hoặc π6x<π6.

Đánh giá

0

0 đánh giá