Cho pi < alpha < 3pi/2 Xác định dấu của các giá trị lượng giác sau

4.5 K

Với giải Bài 3 trang 14 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 2: Giá trị lượng giác của một góc lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 2: Giá trị lượng giác của một góc lượng giác

Bài 3 trang 14 SBT Toán 11 Tập 1: Cho π<α<3π2. Xác định dấu của các giá trị lượng giác sau:

a) cos(α + π);

b) sinπ2α;

c) tanα+3π2;

d) cotαπ2;

e) cos2α+π2;

g) sin(π ‒ 2α).

Lời giải:

π<α<3π2  nên sinα < 0; cosα < 0, tanα > 0 và cotα > 0.

a) cos(α + π) = ‒cosα > 0cosα < 0.

b) sinπ2α=cosα<0cosα < 0.

c) tanα+3π2=cotα<0cotα > 0.

d) cotαπ2=tanα<0tanα > 0.

e) π<α<3π2  nên 2π < 2α < 3π, do đó sin2α > 0.

Vậy cos2α+π2=sin2α<0

g) sin (π ‒ 2α) = sin2α > 0sin2α > 0.

Đánh giá

0

0 đánh giá