Một thiết bị tiệt khuẩn y tế bằng năng lượng mặt trời được mua với giá 60 triệu đồng

664

Với giải Bài 26 trang 62 SBT Toán lớp 8 Cánh diều chi tiết trong Bài 4: Đồ thị hàm số bậc nhất y = ax + b (a ≠ 0) giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 4: Đồ thị hàm số bậc nhất y = ax + b (a ≠ 0)

Bài 26 trang 62 SBT Toán 8 Tập 1: Một thiết bị tiệt khuẩn y tế bằng năng lượng mặt trời được mua với giá 60 triệu đồng, mỗi năm thiết bị tiệt khuẩn đó đều khấu hao k (triệu đồng) với 0<k<60. Gọi y (triệu đồng) là giá của thiết bị tiệt khuẩn đó sau x năm sử dụng.

a) Chứng tỏ rẳng y là hàm số bậc nhất của x, tức là y=ax+b(a0).

b) Trong Hình 10, tia At là một phần của đường thẳng y=ax+b. Tìm a,b. Từ đó, cho biết sau 12 năm sử dụng thì giá của thiết bị tiệt khuẩn đó bằng bao nhiêu phần trăm so với giá mua ban đầu.

 Sách bài tập Toán 8 Bài 4 (Cánh diều): Đồ thị hàm số bậc nhất y = ax + b (a ≠ 0) (ảnh 3)

Lời giải:

a) Công thức biểu thị giá của thiết bị tiệt khuẩn đó sau x năm sử dụng là: y=60kx hay y=kx+60. Mà k0, suy ra y là hàm số bậc nhất của x.

b) Từ câu a, ta có b=60. Do đường thẳng y=ax+b đi qua điểm B(10;30) nên 30=a.10+60. Suy ra a=3. Khi đó, đường thẳng cần tìm là: y=3x+60.

Giá của thiết bị tiệt khuẩn đó sau 12 năm sử dụng là:

3.12+60=24 (triệu đồng)

Tỉ số phần trăm giữa giá của thiết bị tiệt khuẩn đó sau 12 năm sử dụng và giá mua ban đầu là: 24.10060%=40%.

Vậy sau 12 năm sử dụng thì giá của thiết bị tiệt khuẩn đó bằng 40% so với giá mua ban đầu.

Đánh giá

0

0 đánh giá