Với giải Bài 6 trang 33 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 4: Hàm số lượng giác và đồ thị giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài 4: Hàm số lượng giác và đồ thị
Bài 6 trang 33 Toán 11 Tập 1: Khoảng cách từ tâm một guồng nước đến mặt nước và bán kính của guồng đều bằng 3m. Xét gàu G của guồng. Ban đầu gàu G nằm ở vị trí A (Hình 12).
a) Viết hàm số h biểu diễn chiều cao (tính bằng mét) của gàu G so với mặt nước theo góc α = (OA, OG).
b) Guồng nước quay hết mỗi vòng trong 30 giây. Dựa vào đồ thị của hàm số sin hãy cho biết ở các thời điểm t nào trong 1 phút đầu, khoảng cách của gàu đến mặt nước bằng 1,5m.
Lời giải:
a) Điểm G là điểm biểu diễn cho góc lượng giác có số đo α. Khi đó tọa độ điểm G(3cosα; 3sinα).
Chiều cao của gàu ở vị trí G đến mặt nước là: 3 + 3sinα (m).
b) Khoảng cách của gàu đến mặt nước bằng 1,5m khi 3 + 3sinα = 1,5 ⇔ sinα =.
Một vòng quay là 30 giây và t nằm trong khoảng từ 0 đến 1 phút do đó t ∈ [0; 2π].
Sơ đồ tư duy Hàm số lượng giác và đồ thị.
Video bài giảng Toán 11 Bài 4: Hàm số lượng giác và đồ thị - Chân trời sáng tạo
Xem thêm các lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 2 trang 27 Toán 11 Tập 1: Xét tính tuần hoàn của hàm số y = cosx và hàm số y = cotx....
Thực hành 3 trang 30 Toán 11 Tập 1: Cho hàm số y = cos x với x...
Bài 1 trang 32 Toán 11 Tập 1: Các hàm số dưới đây có là hàm số chẵn hay hàm số lẻ không?...
Bài 2 trang 32 Toán 11 Tập 1: Tìm tập xác định của các hàm số sau:...
Bài 3 trang 33 Toán 11 Tập 1: Tìm tập giá trị của hàm số y = 2cosx + 1....
Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Các công thức lượng giác
Bài 4: Hàm số lượng giác và đồ thị