Phương pháp giải và bài tập về Các bài toán vận dụng quy tắc đếm

Tải xuống 7 4.6 K 34

Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập bộ bài tập trắc nghiệm Vận dụng quy tắc đếm Toán lớp 11, tài liệu bao gồm 7 trang, tuyển chọn bài tập trắc nghiệm Vận dụng quy tắc đếm đầy đủ lý thuyết, phương pháp giải chi tiết và bài tập có đáp án (có lời giải), giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.

Tài liệu Các bài toán vận dụng quy tắc đếm gồm các nội dung chính sau:

Phương pháp

-          tóm tắt lý thuyết ngắn gọn và phương pháp giải Các bài toán vận dụng quy tắc đếm.

Các ví dụ

-          gồm 12 ví dụ minh họa đa dạng của Các bài toán vận dụng quy tắc đếm có đáp án và lời giải chi tiết.

Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:

Các bài toán vận dụng quy tắc đếm (ảnh 1)

DẠNG 1. CÁC BÀI TOÁN VẬN DỤNG QUY TẮC ĐẾM

 Phương pháp .

1. Quy tắc cộng

 a) Định nghĩa: Xét một công việc H.

Giả sử H có k phương án H1,H2,...,Hk thực hiện công việc H. Nếu có m1 cách thực hiện phương án H1 , có m2 cách thực hiện phương án H2,.., có mk cách thực hiện phương án Hk và mỗi cách thực hiện phương án Hi không trùng với bất kì cách thực hiện phương án Hj (ij;i,j1,2,...,k) thì có m1+m2+...+mk cách thực hiện công việc H.

b) Công thức quy tắc cộng

Nếu các tập A1,A2,...,An đôi một rời nhau. Khi đó:

A1A2...An=A1+A2+...+An

2. Quy tắc nhân.

a) Định nghĩa: Giả sử một công việc H bao gồm k công đoạn H1,H2,...,Hk. Công đoạn H1 có m1 cách thực hiện, công đoạn H2m2 cách thực hiện,…, công đoạn Hk có mk cách thực hiện. Khi đó công việc H có thể thực hiện theo m1.m2...mk cách.

b) Công thức quy tắc nhân

Nếu các tập A1,A2,...,An đôi một rời nhau. Khi đó:

A1A2...An=A1.A2.....An.

3. Phương pháp đếm bài toán tổ hợp dựa vào quy tắc cộng

Để đếm số cách thực hiện một công việc H nào đó theo quy tắc cộng ta cần phân tích xem công việc H đó có bao nhiêu phương án thực hiện? Mỗi phương án có bao nhiêu cách chọn?

4. Phương pháp đếm bài toán tổ hợp dựa vào quy tắc nhân

Để đếm số cách thực hiện công việc H theo quy tắc nhân, ta cần phân tích công việc H được chia làm các giai đoạn H1,H2,...,Hn và đếm số cách thực hiện mỗi giai đoạn Hi (i=1,2,...,n).

Nhận xét:

1. Ta thường gặp bài toán đếm số phương án thực hiện hành động  thỏa mãn tính chất . Để giải bài toán này ta thường giải theo hai cách sau

Cách 1: Đếm trực tiếp

 Nhận xét đề bài để phân chia các trường hợp xảy ra đối với bài toán cần đếm.

 Đếm số phương án thực hiện trong mỗi trường hợp đó

 Kết quả của bài toán là tổng số phương án đếm trong cách trường hợp trên

Chú ý: * Để đếm số phương án thực hiện trong mỗi trường hợp ta phải chia hành động trong mỗi trường hợp đó thành phương án hành động nhỏ liên tiếp nhau

Và sử dụng quy tắc nhân, các khái niệm hoán ví, chỉnh hợp và tổ hợp để đếm số phương án thực hiện các hành các hành động nhỏ đó.

* Các dấu hiệu đặc trưng để giúp ta nhận dạng một hoán vị của n phần tử là:

     +) Tất cả n phần tử đều phải có mặt

     +) Mỗi phần tử xuất hiện một lần.

     +) Có thứ tự giữa các phần tử.

* Ta sẽ sử dụng khái niệm chỉnh hợp khi

    +) Cần chọn k phần tử từ n phần tử, mỗi phần tử xuất hiện một lần

    +) k phần tử đã cho được sắp xếp thứ tự.

* Ta sử dụng khái niệm tổ hợp khi

    +) Cần chọn k phần tử từ n phần tử, mỗi phần tử xuất hiện một lần

    +) Không quan tâm đến thứ tự k phần tử đã chọn.

Phương án 2: Đếm gián tiếp (đếm phần bù)

Trong trường hợp hành động H chia nhiều trường hợp thì ta đi đếm phần bù của bài toán như sau:

 Đếm số phương án thực hiện hành động H (không cần quan tâm đến có thỏa tính chất T hay không) ta được a phương án.

 Đếm số phương án thực hiện hành động H không thỏa tính chất T ta được b phương án.

Khi đó số phương án thỏa yêu cầu bài toán là: ab.

2. Ta thường gặp ba bài toán đếm cơ bản

Bài toán 1: Đếm số phương án liên quan đến số tự nhiên

Khi lập một số tự nhiên x=a1...an¯ ta cần lưu ý:

* ai0,1,2,...,9 và  a10.

* x là số chẵn an là số chẵn

* x là số lẻ an là số lẻ

* x chia hết cho 3a1+a2+...+an chia hết cho 3

* x chia hết cho  4 an1an¯ chia hết cho 4

* x chia hết cho 5an0,5

* x chia hết cho x là số chẵn và chia hết cho 3

* x chia hết cho 8an2an1an¯ chia hết cho 8

* x chia hết cho 9a1+a2+...+an chia hết cho 9

* x chia hết cho 11 tổng các chữ số ở hàng lẻ trừ đi tổng các chữ số ở hàng chẵn là một số chia hết cho 11.

* x chia hết cho 25 hai chữ số tận cùng là  00,25,50,75.

Bài toán 2: Đếm số phương án liên quan đến kiến thức thực tế

Bài toán 3: Đếm số phương án liên quan đến hình học

Các ví dụ

Ví dụ 1. Từ thành phố  đến thành phố B có 6 con đường, từ thành phố B đến thành phố C có 7 con đường. Có bao nhiêu cách đi từ thành phố A đến thành phố C, biết phải đi qua thành phố B.        

          A.42                              B.46                              C.48                            D.44

Lời giải:

Để đi từ thành phố A đến thành phố B ta có 6 con đường để đi. Với mỗi cách đi từ thành phố A đến thành phố B ta có 7 cách đi từ thành phố B đến thành phố C. Vậy có 6.7=42 cách đi từ thành phố A đến B.

Ví dụ 2. Từ các số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3?

          A.192                            B.202                            C.211                          D.180

Xem thêm
Phương pháp giải và bài tập về Các bài toán vận dụng quy tắc đếm (trang 1)
Trang 1
Phương pháp giải và bài tập về Các bài toán vận dụng quy tắc đếm (trang 2)
Trang 2
Phương pháp giải và bài tập về Các bài toán vận dụng quy tắc đếm (trang 3)
Trang 3
Phương pháp giải và bài tập về Các bài toán vận dụng quy tắc đếm (trang 4)
Trang 4
Phương pháp giải và bài tập về Các bài toán vận dụng quy tắc đếm (trang 5)
Trang 5
Phương pháp giải và bài tập về Các bài toán vận dụng quy tắc đếm (trang 6)
Trang 6
Phương pháp giải và bài tập về Các bài toán vận dụng quy tắc đếm (trang 7)
Trang 7
Tài liệu có 7 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống