Hoạt động khám phá 4 trang 75 Toán 11 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 11

223

Với giải Hoạt động khám phá 4 trang 75 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Giới hạn của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Giới hạn của hàm số

Hoạt động khám phá 4 trang 75 Toán 11 Tập 1: Cho hàm số fx=1x có đồ thị như Hình 3.

Hoạt động khám phá 4 trang 75 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Tìm các giá trị còn thiếu trong bảng sau:

x

10

100

1 000

10 000

100 000

y = f(x)

0,1

0,01

?

?

?

Từ đồ thị và bảng trên, nêu nhận xét về giá trị f(x) khi x càng lớn (dần tới +∞)?

b) Tìm các giá trị còn thiếu trong bảng sau:

x

– 100 000

– 10 000

– 1 000

– 100

– 10

y = f(x)

?

?

?

–0,01

–0,1

Từ đồ thị và bảng trên, nêu nhận xét về giá trị f(x) khi x càng bé (dần tới – ∞)?

Lời giải:

a) Với x = 1 000 suy ra y=11000=0,001;

Với x = 10 000 suy ra y=110000=0,0001;

Với x = 100 000 suy ra y=1100000=0,00001.

Từ đó ta có bảng sau:

x

10

100

1 000

10 000

100 000

y = f(x)

0,1

0,01

0,001

0,0001

0,00001

b) Với x = – 100 000 suy ra y=1100000=0,00001;

Với x = – 10 000 suy ra y=110000=0,0001;

Với x = – 1 000 suy ra y=11000=0,001.

Từ đó ta có bảng sau:

x

– 100 000

– 10 000

– 1 000

– 100

– 10

y = f(x)

–0,00001

–0,0001

–0,001

–0,01

–0,1

 Lý thuyết Giới hạn hữu hạn của hàm số tại vô cực

Cho hàm số y=f(x) xác định trên khoảng (a;+). Ta nói hàm số f(x)có giới hạn là số L khi x+ nếu với dãy số (xn) bất kì xn>a và xn+ta có f(xn)L, kí hiệu limx+f(x)=L hay f(x)L khi x+.

Cho hàm số y=f(x) xác định trên khoảng (;a). Ta nói hàm số f(x) có giới hạn là số L khi x nếu với dãy số (xn) bất kì xn<a và xnta có f(xn)L, kí hiệu limxf(x)=L hay f(x)L khi x.

* Nhận xét:

  • Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
  • Với c là hằng số, k là một số nguyên dương ta có:

limx±c=c,limx±(cxk)=0

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá