Hoạt động khám phá 3 trang 73 Toán 11 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 11

283

Với giải Hoạt động khám phá 3 trang 73 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Giới hạn của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Giới hạn của hàm số

Hoạt động khám phá 3 trang 73 Toán 11 Tập 1: Giá cước vận chuyển bưu kiện giữa hai thành phố do một đơn vị được cho bởi bảng sau:

Khối lượng bưu kiện (100 gam)

Giá cước cận vùng (nghìn đồng)

đến 1

6

trên 1 đến 2,5

7

từ 2,5 đến 5

10

...

...

Nếu chỉ xét trên khoảng từ 0 đến 5 (tính theo 100 gam) thì hàm số giá cước (tính theo nghìn đồng) xác định như sau:

Hoạt động khám phá 3 trang 73 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Đồ thị của hàm số như Hình 2.

Hoạt động khám phá 3 trang 73 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Giả sử (xn) là dãy số bất kì sao cho xn ∈ (1; 2,5) và lim xn = 1. Tìm lim f(xn).

b) Giả sử xn' là dãy số bất kì sao cho xn'0;1 và limxn'=1. Tìm limfxn'.

c) Nhận xét về kết quả ở a) và b).

Lời giải:

a) Giả sử (xn) là dãy số bất kì sao cho xn ∈ (1; 2,5) và lim xn = 1 thì lim f(xn) = lim 7 = 7.

b) Giả sử xn' là dãy số bất kì sao cho xn'0;1 và limxn'=1 thì limfxn'=6.

c) Nhận xét: Ở ý a) ta có:

Lý thuyết Giới hạn một phía

Cho hàm số y=f(x) xác định trên khoảng (x0;b).

Ta nói y=f(x) có giới hạn bên phải là số L khi xx0 nếu với dãy số (xn) bất kì,x0<xn<b và xnx0ta có f(xn)L, kí hiệu limxx0+f(x)=L.

Cho hàm số y=f(x) xác định trên khoảng (a;x0).

Ta nói y=f(x)có giới hạn bên phải là số L khi xx0 nếu với dãy số (xn)bất kì,a<xn<x0 và xnx0ta có f(xn)L, kí hiệu limxx0f(x)=L.

*Chú ý:

limxx0f(x)=Llimxx0f(x)=limxx0+f(x)=L

limxx0f(x)limxx0+f(x) thì không tồn tại limxx0f(x).

Các phép toán về giới hạn hữu hạn của hàm số ở Mục 2 vẫn đúng khi ta thay xx0bằng xx0+hoặc xx0.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá