Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm của BC

3.2 K

Với giải Bài 71 trang 89 SBT Toán lớp 7 Cánh diều chi tiết trong Bài 10: Tính chất ba đường trung tuyến của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 10: Tính chất ba đường trung tuyến của tam giác

Bài 71 trang 89 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm của BC. Trên tia đối của MG lấy điểm D sao cho MD = MG.

a) Chứng minh CG là trung tuyến của tam giác ACD.

b) Chứng minh BG song song với CD.

c) Gọi I là trung điểm của BD; AI cắt BG tại F. Chứng minh AF = 2FI.

Lời giải:

Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm của BC. Trên tia đối của MG

a) Vì G là trọng tâm tam giác ABC nên GM = 12GA.

Mà MD = MG (giả thiết) nên M là trung điểm của GD và GM = 12GD.

Suy ra GD = GA.

Do đó CG là trung tuyến của tam giác ACD.

Vậy CG là trung tuyến của tam giác ACD.

b) Xét ∆BGM và ∆CDM có:

GM = DM (giả thiết),

GMB^=DMC^ (hai góc đối đỉnh),

MB = MC (vì M là trung điểm của BC)

Nên ∆BGM = ∆CDM (c.g.c).

Suy ra BGM^=CDM^ (hai góc tương ứng).

Mà chúng ở vị trí so le trong nên BG // CD.

Vậy BG // CD.

c) Trong tam giác ABD có AI và BG là hai đường trung tuyến, AI và BG cắt nhau tại F.

Do đó F là trọng tâm của tam giác ABD.

Suy ra FI = 12FA hay AF = 2FI.

Vậy AF = 2FI.

Đánh giá

0

0 đánh giá