Cho hai đa thức F(x) = 2x^4 – x^3 + x – 3 ; G(x) = – x^3 + 5x^2 + 4x + 2

2 K

Với giải Bài 30 trang 47 SBT Toán lớp 7 Cánh diều chi tiết trong Bài 3: Phép cộng, phép trừ đa thức một biến giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 3: Phép cộng, phép trừ đa thức một biến 

Bài 30 trang 47 sách bài tập Toán lớp 7 Tập 2: Cho hai đa thức:

F(x) = 2x4 – x3 + x – 3;

G(x) = – x3 + 5x2 + 4x + 2.

a) Tìm đa thức H(x) sao cho F(x) + H(x) = 0.

b) Tìm đa thức K(x) sao cho K(x) – G(x) = F(x).

Lời giải:

a) Ta có F(x) + H(x) = 0.

Suy ra H(x) = – F(x)

Hay H(x) = – (2x4 – x3 + x – 3)

= ‒2x4 + x3 ‒ x + 3

Vậy H(x) = ‒2x4 + x3 ‒ x + 3.

b) Ta có K(x) – G(x) = F(x).

Suy ra K(x) = F(x) + G(x)

Hay K(x) = (2x4 – x3 + x – 3) + (– x3 + 5x2 + 4x + 2)

= 2x4 – x3 + x – 3 – x3 + 5x2 + 4x + 2

= 2x4 + (– x3 – x3) + 5x2 + (x + 4x) + (– 3 + 2)

= 2x4 – 2x3 + 5x2 + 5x – 1.

Vậy K(x) = 2x4 – 2x3 + 5x2 + 5x – 1.

Đánh giá

0

0 đánh giá