Cho hai đa thức F(x) = x^4 + x^3 – 3x^2 + 2x – 9 và G(x) = – x^4 + 2x^2 – x + 8

1.3 K

Với giải Bài 27 trang 46 SBT Toán lớp 7 Cánh diều chi tiết trong Bài 3: Phép cộng, phép trừ đa thức một biến giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 3: Phép cộng, phép trừ đa thức một biến 

Bài 27 trang 46 sách bài tập Toán lớp 7 Tập 2: Cho hai đa thức:

F(x) = x4 + x3 – 3x2 + 2x – 9 và G(x) = – x4 + 2x2 – x + 8.

a) Tìm đa thức H(x) sao cho H(x) = F(x) + G(x).

b) Tìm bậc của đa thức H(x).

c) Kiểm tra xem x = 0, x = 1, x = –1 có là nghiệm của đa thức H(x) hay không.

d) Tìm đa thức K(x) sao cho H(x) – K(x) = 12x2.

Lời giải:

a) Ta có:

H(x) = F(x) + G(x).

= (x4 + x3 – 3x2 + 2x – 9) + (– x4 + 2x2 – x + 8)

= x4 + x3 – 3x2 + 2x – 9 – x4 + 2x2 – x + 8

= (x4 – x4) + x3 + (– 3x2 + 2x2) + (2x – x) + (– 9 + 8)

= x3 – x2 + x – 1.

Vậy H(x) = x3 – x2 + x – 1.

b) Đa thức H(x) = x3 – x2 + x – 1 có bậc là 3 do số mũ cao nhất của biến x là 3.

c) Xét đa thức H(x) = x3 – x2 + x – 1.

• Thay x = 0 vào đa thức H(x) ta được:

H(0) = 03 – 02 + 0 – 1 = –1 ≠ 0.

Do đó x = 0 không là nghiệm của đa thức H(x).

• Thay x = 1 vào đa thức H(x) ta được:

H(1) = 13 – 12 + 1 – 1 = 0.

Do đó x = 1 là nghiệm của đa thức H(x).

• Thay x = –1 vào đa thức H(x) ta được:

H(–1) = (–1)3 – (–1)2 + (–1) – 1 = –4 ≠ 0.

Do đó x = –1 không là nghiệm của đa thức H(x).

Vậy x = 1 là nghiệm của đa thức H(x) và x = 0, x = –1 không là nghiệm của đa thức H(x).

d) Ta có: H(x) – K(x) = 12x2.

Suy ra K(x) = H(x) – 12x2.

Hay K(x) = x3 – x2 + x – 1 – 12x2.

= x3 + (– x2  12x2) + x – 1

= x3  32x2 + x – 1.

Vậy K(x) = x3  32x2 + x – 1.

Đánh giá

0

0 đánh giá