Với giải HĐ1 trang 38 Toán lớp 10 Kết nối tri thức với cuộc sống trong Bài 6: Hệ thức lượng trong tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 6: Hệ thức lượng trong tam giác
HĐ1 trang 38 Toán lớp 10: Một tàu biển xuất phát từ cảng Vân Phong (Khánh Hòa) theo hướng đông với vận tốc 20km/h. Sau khi đi được 1 giờ, tàu chuyển sang hướng đông nam rồi giữ nguyên vận tốc và đi tiếp.
a) Hãy vẽ sơ đồ đường đi của tàu trong 1,5 giờ kể từ khi xuất phát (1km trên thực tế ứng với 1 cm trên bản vẽ).
b) Hãy đo trực tiếp trên bản vẽ và cho biết sau 1,5 giờ kể từ khi xuất phát, tàu cách cảng Vân Phong bao nhiêu kilomet (số đo gần đúng).
c) Nếu sau khi đi được 2 giờ, tàu chuyển sang hướng nam (thay vì hướng đông nam) thì có thể dùng định lí Pythagore (Pi-ta-go) để tính chính xác các số đo trong câu b hay không?
Phương pháp giải:
a)
Bước 1: Xác định các hướng Đông, tây, nam, bắc. Giả sử tàu xuất phát từ điểm O.
Bước 2: Tính quãng đường đi theo từng hướng sau 1,5 giờ.
Bước 3: Vẽ sơ đồ đường đi
b)
Bước 1: Đo khoảng cách từ điểm xuất phát tới tàu trên sơ đồ
Bước 2: Quy ra khoảng cách thực tế.
c)
Bước 1: Vẽ sơ đồ đường đi.
Bước 2: Tính khoảng cách từ cảng tới tàu dựa vào định lí Pythagore.
Lời giải:
a) Giả sử tàu xuất phát từ điểm O như hình dưới.
Trong 1 giờ, tàu di chuyển từ O đến A với quãng đường là: 20.1 =20 (km) tương ứng với 20 cm trên sơ đồ.
Trong 0,5 giờ tiếp theo, tàu di chuyển từ A đến B với quãng đường là: 20.0,5 = 10 (km) tương ứng với 10 cm trên sơ đồ.
b)
Trên sơ đồ, khoảng cách từ cảng đến tàu là đoạn OB dài khoảng 28 cm
Do đó khoảng cách từ cảng đến tàu thực tế khoảng 28 km.
c)
Nếu sau khi đi được 2 giờ, tàu chuyển sang hướng nam (thay vì hướng đông nam) thì sơ đồ đường đi của tàu như sau:
Sau 2 giờ đầu, tàu đi từ O đến A, với quãng đường là 20.2 = 40 (km) tương ứng 40 cm trên sơ đồ.
Sau đó, tàu chuyển sang hướng nam, vị trí của tàu là điểm B.
Khi đó ta có thể tính chính xác khoảng cách từ cảng đến tàu, chính là đoạn OB (do tam giác OAB vuông tại A) dựa vào định lí Pythagore:
Lý thuyết Định lí Côsin
Đối với tam giác ABC, ta thường kí hiệu A, B, C là các góc của tam giác tại đỉnh tương ứng; a, b, c tương ứng là độ dài của các cạnh đối diện với đỉnh A, B, C; p là nửa chu vi; S là diện tích; R, r tương ứng là bán kính đường tròn ngoại tiếp, nội tiếp tam giác.
Định lí Côsin. Trong tam giác ABC:
a2 = b2 + c2 – 2bc.cosA.
b2 = c2 + a2 – 2ca.cosB.
c2 = a2 + b2 – 2ab.cosC.
Ví dụ: Cho tam giác ABC có góc A bằng 60° và AB = 2 cm, AC = 3 cm. Tính độ dài cạnh BC.
Hướng dẫn giải
Áp dụng Định lí côsin cho tam giác ABC, ta có:
BC2 = AB2 + AC2 – 2AB . AC . cos 60o = 22 + 32 – 2.2.3. = 7.
Suy ra BC = (cm)
Vậy BC = cm.
Xem thêm các bài giải Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Vận dụng 1 trang 39 Toán lớp 10: Dùng định lí cosin, tính khoảng cách được đề cập trong HĐ 1b...
HĐ3 trang 39 Toán lớp 10: Trong mỗi hình dưới dây, hãy tính R theo a và sinA...
Luyện tập 3 trang 40 Toán lớp 10: Giải tam giác ABC, biết b = 32, c =45, ...
HĐ4 trang 41 Toán lớp 10: Cho tam giác ABC với I là tâm đường trong nội tiếp tam giác...
HĐ5 trang 41 Toán lớp 10: Cho tam giác ABC với đường cao BD...
Luyện tập 4 trang 41 Toán lớp 10: Tính diện tích tam giác ABC có ...
Bài 3.5 trang 42 Toán lớp 10: Cho tam giác ABC có a = 6, b = 5, c =8. Tính cos A, S,r...
Bài 3.6 trang 42 Toán lớp 10: Cho tam giác ABC có . Tính R,b,c...
Bài 3.7 trang 42 Toán lớp 10: Giải tam giác ABC và tính diện tích của tam giác đó, biết ...
Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 5: Giá trị lượng giác của một góc từ 0 đến 180
Bài 6: Hệ thức lượng trong tam giác
Bài 8: Tổng và hiệu của hai vectơ