Bài 7 trang 61 Toán 10 Tập 1 | Cánh diều Giải toán lớp 10

2.3 K

Với giải Bài 7 trang 61 Toán lớp 10 Cánh diều chi tiết trong Bài 5: Hai dạng phương trình quy về phương trình bậc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài tập cuối chương III

Bài 7 trang 61 Toán lớp 10: Giải các bất phương trình sau:

a) 2x2+3x+10

b) 3x2+x+1>0

c) 4x2+4x+10

d) 16x2+8x1<0

e) 2x2+x+3<0

g) 3x2+4x1<0

Phương pháp giải:

Giải bất phương trình dạng f(x)>0.

Bước 1: Xác định dấu của hệ số a và tìm nghiệm của f(x)(nếu có)

Bước 2: Sử dụng định lí về dấu của tam thức bậc hai để tìm tập hợp những giá trị của x sao cho f(x) mang dấu “+”

Bước 3: Các bất phương trình bậc hai có dạng f(x)<0,f(x)0,f(x)0 được giải bằng cách tương tự.

Lời giải:

a) 2x2+3x+10

Tam thức bậc hai f(x)=2x2+3x+1 có 2 nghiệm phân biệt x=1,x=12

hệ số a=2>0

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy f(x)0[x1x12

Vậy tập nghiệm của bất phương trình là (;1][12;+)

b) 3x2+x+1>0

Tam thức bậc hai f(x)=3x2+x+1 có 2 nghiệm phân biệt x=1136,x=1+136

Hệ số a=3<0

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy f(x)>01136<x<1+136

Vậy tập nghiệm của bất phương trình là (1136;1+136)

c) 4x2+4x+10

Tam thức bậc hai f(x)=4x2+4x+1 có nghiệm duy nhất x=12

hệ số a=4>0

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy f(x)0xR

Vậy tập nghiệm của bất phương trình là R

d) 16x2+8x1<0

Tam thức bậc hai f(x)=16x2+8x1 có nghiệm duy nhất x=14

hệ số a=16<0

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy f(x)<0x14

Vậy tập nghiệm của bất phương trình là R{14}

e) 2x2+x+3<0

Ta có Δ=124.2.3=23<0 và có a=2>0

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho 2x2+x+3 mang dấu “-” là 

Vậy tập nghiệm của bất phương trình 2x2+x+3<0 là 

g) 3x2+4x5<0

Tam thức bậc hai f(x)=3x2+4x5 có Δ=22(3).(5)=11<0 và có a=3<0

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho 3x2+4x5 mang dấu “-” là R

Vậy tập nghiệm của bất phương trình 3x2+4x5<0 là R

Bài tập vận dụng:

Bài 1. Vẽ đồ thị của hàm số sau: y = 2x2 – 6x + 4 

Hướng dẫn giải

– Tập xác định: D = ℝ

– Ta có: a = 2; b = –6; c = 4; Δ=b24ac = (6)2– 4.2.4 = 4

– Toạ độ đỉnh I = b2a;Δ4a = 62.2;44.2=32;12

– Trục đối xứng x=b2a32

– Giao điểm của parabol với trục Oy là A(0; 4)

– Giao điểm của parabol với trục Ox là B (1; 0); (2; 0)

– Chọn một điểm thuộc đồ thị cho x = –1 thay vào y = 2x2 – 6x + 4 ta được điểm

D(–1; 12)

Vẽ parabol qua các điểm trên:

Bài tập cuối chương 3 (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều (ảnh 1)

Bài 2. Khi nào thì tam thức bậc hai fx=x2+51x5 nhận giá trị dương.

Hướng dẫn giải

Ta có: fx=x2+51x5=0x=1x=5.

Bảng xét dấu:

Bài tập cuối chương 3 (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều (ảnh 1)

Dựa vào bảng xét dấu fx>0x;51;+. 

Bài 3Tìm tập nghiệm của bất phương trình: 2x22+1x+1<0

Hướng dẫn giải

Ta có: fx=2x22+1x+1=0x=22x=1.

Bảng xét dấu

Bài tập cuối chương 3 (Lý thuyết + Bài tập Toán lớp 10) – Cánh diều (ảnh 1)

Dựa vào bảng xét dấu fx<022<x<1.

Xem thêm các bài giải Toán lớp 10 Cánh diều hay, chi tiết khác:

Bài 1 trang 60 Toán lớp 10: Tìm tập xác định của mỗi hàm số sau:...

Bài 2 trang 60 Toán lớp 10:...

Bài 3 trang 60 Toán lớp 10Một nhà cung cấp dịch vụ Internet đưa ra hai gói khuyến mại cho người dùng như sau:...

Bài 4 trang 60 Toán lớp 10:...

Bài 5 trang 61 Toán lớp 10Vẽ đồ thị của mỗi hàm số sau:...

Bài 6 trang 61 Toán lớp 10Lập bảng xét dấu của mỗi tam thức bậc hai sau:...

Bài 8 trang 61 Toán lớp 10Giải các phương trình sau:...

Bài 9 trang 61 Toán lớp 10: Một kĩ sư thiết kế đường dây điện từ vị trí A đến vị trí S và từ vị trí S đến vị trí C trên cù lao như Hình 38....

Xem thêm các bài giải SGK Toán 10 Cánh diều hay, chi tiết khác:

Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°. Định lí côsin và định lí sin trong tam giác

Bài 2: Giải tam giác. Tính diện tích tam giác

Bài 3: Khái niệm vectơ

Đánh giá

0

0 đánh giá