Cho hai điểm A(–3; 0), B(1; –2) và d: x + y – 1 = 0. Chứng minh rằng hai điểm A và B nằm cùng phía so với đường thẳng d

3.6 K

Với giải Bài 7.17 trang 38 SBT Toán lớp 10 Kết nối tri thức chi tiết trong Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải sách bài tập Toán lớp 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 7.17 trang 38 SBT Toán 10 Tập 2Trong mặt phẳng Oxy, cho hai điểm A(–3; 0), B(1; –2) và đường thẳng d: x + y – 1 = 0.

a) Chứng minh rằng hai điểm A và B nằm cùng phía so với đường thẳng d.

b) Điểm M thay đổi trên đường thẳng d. Tìm giá trị nhỏ nhất của chu vi tam giác ABM.

Lời giải:

a)

Ta có (–3 + 0 – 1).(1 – 2 – 1) = 8 > 0 nên theo tập nghiệm của bất phương trình bậc nhất hai ẩn ta có A, B nằm cùng phía so với đường thẳng d.

b)

Dựa vào phương trình đường thẳng d ta có:

x + y – 1 = 0

 y = 1 – x

Do M thuộc đường thẳng d nên toạ độ của điểm M có dạng M(t; 1– t).

Chu vi tam giác ABM là: AB + MA + MB

Mà AB luôn không đổi nên chu vi tam giác ABM nhỏ nhất khi và chỉ khi MA + MB nhỏ nhất.

Lấy A’ đối xứng với A qua đường thẳng d. Khi đó ta có:

MA + MB = MA’ + MB ≥ A’B

Dấu bằng xảy ra khi M = A’B ∩ d

Gọi H là hình chiếu vuông góc của A lên d. Khi đó AH đi qua điểm A(–3;0) và nhận vectơ chỉ phương ud=1;1  của đường thẳng d là vectơ pháp tuyến nên phương trình của AH là:

1(x + 3) – 1(y – 0) = 0

 x – y + 3  = 0

Vậy toạ độ điểm H là nghiệm của hệ phương trình

x+y1=0xy+3=0x+y=1xy=3x=1y=2

Suy ra H(–1; 2). Mặt khác, H là trung điểm của AA’ nên ta có:

xH = (xA + xA’) : 2   xA’ ­­­­­­= 2xH – xA = 2.(–1) – (–3) = 1

yH = (yA + yA’) : 2   yA’ ­­­­­­= 2yH – yA = 2.2 – 0 = 4

Do đó, ta có A’(1; 4)

Ta có A'B=0;6  là một vectơ chỉ phương của đường thẳng A’B. Do đó A’B là đường thẳng đi qua đểm A’(1; 4) và nhận n=1;0  là một vectơ pháp tuyến. Phương trình của đường thẳng A’B là:

1(x – 1) + 0(y – 4) = 0

 x – 1 = 0

Vậy toạ độ điểm M là nghiệm của hệ phương trình

x+y1=0x1=01+y1=0x=1x=1y=0

Do đó ta có M(1; 0).

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 7.10 trang 37 SBT Toán 10 Tập 2Xét vị trí tương đối của các cặp đường thẳng sau:...

Bài 7.11 trang 38 SBT Toán 10 Tập 2Tính góc giữa các cặp đường thẳng sau:...

Bài 7.12 trang 38 SBT Toán 10 Tập 2Cho hai đường thẳng d: 2x + y + 1 = 0 và k: 2x + 5y – 3 = 0...

Bài 7.13 trang 38 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, tìm điểm M thuộc trục Ox sao cho khoảng cách từ M đến đường thẳng ∆: 3x + y – 3= 0 bằng 10 ...

Bài 7.14 trang 38 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho đường thẳng ∆: 2x + y – 5 = 0...

Bài 7.15 trang 38 SBT Toán 10 Tập 2Trong mặt phẳng Oxy, cho tam giác ABC có A(2; –1), B(2; –2) và C(0; –1)...

Bài 7.16 trang 38 SBT Toán 10 Tập 2: Cho đường thẳng d: x – 2y + 1 = 0 và điểm A(–2; 2)...

Bài 7.18 trang 39 SBT Toán 10 Tập 2: Trong một hoạt động ngoại khoá của trường, lớp Việt định mở một gian hàng bán bánh mì và nước khoáng. Biết rằng giá gốc một bánh mì là 15 000 đồng, một chai nước là 5 000 đồng. Các bạn dự kiến bán bánh mì với giá 20 000 đồng/1 bánh mì và nước giá 8 000 đồng/1 chai. Dựa vào thống kê số người tham gia hoạt động và nhu cầu thực tế các bạn dự kiến tổng số bánh mì và số chai nước không vượt qua 200. Theo quỹ lớp thì số tiền lớp Việt được dùng không quá 2 000 000 đồng. Hỏi lớp Việt có thể đạt được tối đa lợi nhuận là bao nhiêu ?...

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường conic

Bài tập cuối chương 7

Đánh giá

0

0 đánh giá