Sách bài tập Toán 10 Bài 19 (Kết nối tri thức): Phương trình đường thẳng

3.7 K

Với giải sách bài tập Toán 10 Bài 19: Phương trình đường thẳng sách Kết nối tri thức hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài 19: Phương trình đường thẳng

Giải SBT Toán 10 trang 31 Tập 2

Bài 7.1 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho điểm D(0; 2) và hai vectơ n=1;3,u=1;3 .

a) Viết phương trình tổng quát của đường thẳng d đi qua D và nhận n  là một vectơ pháp tuyến.

b) Viết phương trình tham số của đường thẳng Δ đi qua D và nhận u  là một vectơ chỉ phương.

Lời giải:

a)

Phương trình tổng quát của đường thẳng d đi qua D và nhận n  là một vectơ pháp tuyến là:

1(x – 0) – 3(y – 2) = 0

 x – 3y + 6 = 0

Vậy d: x – 3y + 6 = 0.

b)

Phương trình tham số của đường thẳng ∆ đi qua D và nhận u  là một vectơ chỉ phương là:

x=0+1.ty=2+3.tx=ty=2+3t  (với t là tham số)

Vậy ∆: x=ty=2+3t .

Bài 7.2 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho ba điểm A(1; 2), B(0; –1) và C(–2; 3). Lập phương trình tổng quát của đường thẳng qua A và vuông góc với đường thẳng BC.

Lời giải:

Đường thẳng d qua A và vuông góc với đường thẳng BC nhận vectơ BC  làm vectơ pháp tuyến.

BC = (–2 – 0; 3 + 1) = (–2; 4)

Phương trình của đường thẳng d là:

–2(x – 1) + 4(y – 2) = 0

 –2x + 2 + 4y – 8 = 0

 –2x + 4y – 6 = 0

 x – 2y + 3 = 0

Vậy d: x – 2y + 3 = 0.

Bài 7.3 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho hai điểm A(1; 2) và B(2; 3). Tìm một vectơ chỉ phương của đường thẳng AB và viết phương trình tham số của đường thẳng AB.

Lời giải:

Một vectơ chỉ phương của đường thẳng AB chính là vectơ AB .

Ta có: AB  = (1; 1)

Đường thẳng AB đi qua điểm A(1; 2) có vectơ chỉ phương AB  = (1; 1) có phương trình tham số là: x=1+1.ty=2+1.tx=1+ty=2+t .

Bài 7.4 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho đường thẳng ∆: 2x – y + 5 = 0. Tìm tất cả các vectơ pháp tuyến có độ dài 25 của đường thẳng ∆.

Lời giải:

Dựa vào phương trình tổng quát của đường thẳng ∆: 2x – y + 5 = 0. Đường thẳng ∆ có một vectơ pháp tuyến là n=2;1  nên các vectơ pháp tuyến của ∆ có dạng là n'=2t;t . Theo giả thiết ta có:

n'=2t2+t2=25

 4t2 + t2 = 20

 5t2 = 20

 t2 = 4

 t = ±2

Với t = 2, ta được vectơ pháp tuyến thỏa mãn yêu cầu đề bài là: n1' = (4; –2)

Với t = – 2, ta được vectơ pháp tuyến thỏa mãn yêu cầu đề bài là: n2' = (–4; 2).

Vậy có hai vectơ pháp tuyến thỏa mãn là n1'  = (4; –2) và n2'  = (–4; 2).

Bài 7.5 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho đường thẳng d có phương trình y = –2x + 3. Viết phương trình tham số và phương trình tổng quát của đường thẳng d.

Lời giải:

Ta có: y = –2x + 3  2x + y – 3 = 0

Phương trình tổng quát của đường thẳng d là: 2x + y – 3 = 0.

Từ phương trình tổng quát ta thấy đường thẳng d: 2x + y – 3 = 0 có một vectơ pháp tuyến là: n  = (2; 1), do đó, nó có một vectơ chỉ phương là u = (1; –2).

Thay x = 1 vào phương trình tổng quát ta có: y = 1.

Chọn điểm (1; 1) thuộc đường thẳng  d: 2x + y – 3 = 0. Phương trình tham số của đường thẳng này là:

x=1+1.ty=1+(2).tx=1+ty=12t.

Bài 7.6 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho điểm M(2; 1) và đường thẳng Δ:x=2ty=2t . Tìm điểm N thuộc đường thẳng ∆ sao cho MN =2 .

Lời giải:

Do N thuộc đường thẳng ∆ nên tọa độ của N có dạng: (2 – t; 2t).

Ta có: MN = (2 – t – 2; 2t – 1) = (–t; 2t – 1)

MN =2

(t)2+(2t1)2=2

 (– t)2 + (2t – 1)2 = 2

 t2 + 4t2 – 4t + 1 = 2

 5t2 – 4t – 1 = 0

 t = 1 hoặc t = 15

Với t = 1, ta có N(1; 2)

Với t = 15 , ta có N115;25 .

Vậy có hai điểm N thỏa mãn là N(1; 2) và N115;25 .

Bài 7.7 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho tam giác ABC có toạ độ ba đỉnh A(0; –1), B(2; 3) và C(–4; 1). Lập phương trình tham số của đường trung bình ứng với cạnh BC của tam giác ABC.

Lời giải:

Gọi d là đường trung bình ứng với cạnh BC của tam giác ABC nên d // BC và d đi qua trung điểm M của AB, do đó:

Đường thẳng d nhận vectơ BC = (–4 – 2; 1 – 3) = (–6; –2) là một vectơ chỉ phương.

Tọa độ trung điểm M là xM = 0+22=1 ; yM = 1+32=1 .

Suy ra M(1; 1) thuộc d.

Phương trình tham số của d là:

x=1+(6).ty=1+(2).tx=16ty=12t.

Giải SBT Toán 10 trang 32 Tập 2

Bài 7.8 trang 32 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho hình vuông ABCD có A(–1; 0) và B(1; 2).

a) Lập phương trình đường thẳng BC.

b) Tìm toạ độ của điểm C biết rằng hoành độ của điểm C là số dương.

Lời giải:

Sách bài tập Toán 10 Bài 19: Phương trình đường thẳng - Kết nối tri thức (ảnh 1)

a)

Do ABCD là hình vuông nên AB và BC vuông góc với nhau tại B.

Do đó, đường thẳng BC nhận vectơ AB = (1 – (–1); 2 – 0) = (2; 2) làm vectơ pháp tuyến.

Chọn điểm B(1; 2) thuộc đường thẳng BC. Phương trình tổng quát của đường thẳng BC là:

2(x – 1) + 2(y – 2) = 0

 2x + 2y – 2 – 4 = 0

 2x + 2y – 6 = 0

 x + y – 3 = 0.

Vậy phương trình tổng quát đường thẳng BC: x + y – 3 = 0.

b)

Từ phương trình đường thẳng BC là: x + y – 3 = 0 ta có:

y = 3 – x

Điểm C thuộc đường thẳng BC nên tọa độ của nó có dạng: (t; 3 – t)

BC = (t – 1; 3 – t – 2) = (t – 1; 1 – t)

BC=(t1)2+(1t)2

AB=22+22=22

Do ABCD là hình vuông nên ta có:

BC = AB

 (t – 1)2 + (1 – t)2 = ( 22 )2

 t2 – 2t + 1 + 1 – 2t + t2 = 8

 2t2 – 4t – 6 = 0

 t = 3 hay t = –1

Với t = 3, ta có: C (3; 0)

Với t = –1, ta có: C (–1; 4)

Mà hoành độ của điểm C là số dương nên C(3; 0) thỏa mãn yêu cầu đề bài.

Bài 7.9 trang 32 SBT Toán 10 Tập 2Nhà bạn Nam định đổi tủ lạnh và dự định kê vào vị trí dưới cầu thang. Biết vị trí định kê tủ lạnh có mặt cắt là một hình thang vuông với hai đáy lần lượt là 150 cm và 250 cm, chiều cao là 150 cm (như hình vẽ). Bố mẹ bạn Nam định mua một tủ lạnh 2 cánh (Side by side) có chiều cao là 183 cm và bề ngang 90 cm. Bằng cách sử dụng toạ độ trong mặt phẳng, em hãy giúp Nam tính xem bố mẹ bạn Nam có thể kê vừa chiếc tủ lạnh vào vị trí cần kê không ?

Sách bài tập Toán 10 Bài 19: Phương trình đường thẳng - Kết nối tri thức (ảnh 1)

 Lời giải:

Sách bài tập Toán 10 Bài 19: Phương trình đường thẳng - Kết nối tri thức (ảnh 1)

Gắn hệ trục toạ độ Oxy như hình vẽ. Khi đó để tận dụng tối đa chiều cao có thể khi kê tủ lạnh thì bố mẹ bạn Nam sẽ kê tủ sát vào trục Oy.

Do đó để kê được một chiếc tủ lạnh 2 cánh với bề ngang 90 cm thì chiều cao của tủ phải nhỏ hơn tung độ của điểm E thuộc đường thẳng BC với hoành độ điểm E bằng 90.

Ta có:  

B(150;150), C(0; 250)

BC=150;100

Đường thẳng BC nhận vectơ BC  là vectơ chỉ phương nên có vectơ pháp tuyến là nBC=100;150 Phương trình đường thẳng BC là:

100(x – 0) + 150(y – 250) = 0  2x + 3y – 750 = 0.

Điểm E thuộc BC có hoành độ bằng 90 nên tung độ của E tính theo công thức

2.90 + 3yE – 750 = 0  yE = 190

Do 183 cm < 190 cm nên bố mẹ bạn Nam có thể kê chiếc tủ lạnh có bề ngang là 90 cm và chiều cao 183 cm.

Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 6

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường conic

Lý thuyết Phương trình đường thẳng

1. Phương trình tổng quát của đường thẳng

- Vectơ n khác 0 được gọi là vectơ pháp tuyến của đường thẳng ∆ nếu giá của nó vuông góc với ∆.

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Kết nối tri thức

Nhận xét:

+ Nếu n là vectơ pháp tuyến của đường thẳng ∆ thì kn (k ≠ 0) cũng là vectơ pháp tuyến của ∆.

+ Đường thẳng hoàn toàn xác định nếu biết một điểm và một vectơ pháp tuyến của nó.

Ví dụ: Cho hai điểm A(2; 1) và B(0; 4). Hãy chỉ ra một vectơ pháp tuyến của đường trung trực của đoạn thẳng AB.

Hướng dẫn giải

Ta có AB=(02;41)=(2;3)

Vì đường trung trực của đoạn thẳng AB là đường thẳng vuông góc với AB nên có vectơ pháp tuyến là AB=(2;3).

Vậy vectơ pháp tuyến của đường trung trực của đoạn thẳng AB là AB(2;3).

- Trong mặt phẳng tọa độ, cho đường thẳng ∆ đi qua điểm A(x0; y0) và có vectơ pháp tuyến n(a;b). Khi đó M(x; y) thuộc ∆ khi và chỉ khi a(x – x0) + b(y – y0) = 0.

- Trong mặt phẳng tọa độ, mọi đường thẳng đều có phương trình tổng quát dạng ax + by + c = 0, với a và b không đồng thời bằng 0.

Ngược lại, mỗi phương trình dạng ax + by + c = 0, với a và b không đồng thời bằng 0, đều là phương trình của một đường thẳng, nhận n(a;b) là một vectơ pháp tuyến.

Ví dụ: Trong mặt phẳng tọa độ, lập phương trình tổng quát của đường thẳng ∆ đi qua điểm A(1; 2) và nhận n(1;3) là một vectơ pháp tuyến.

Hướng dẫn giải

Điểm A(1; 2) thuộc ∆ và n(1;3) là một vectơ pháp tuyến của ∆.

Khi đó đường thẳng ∆ có phương trình là: – 1(x – 1) + 3(y – 2) = 0 hay – x + 3y – 5 = 0.

Vậy phương trình tổng quát của đường thẳng ∆ là – x + 3y – 5 = 0.

Nhận xét: Trong mặt phẳng tọa độ, cho đường thẳng ∆: ax + by + c = 0.

+ Nếu b = 0 thì phương trình ∆ có thể đưa về dạng x = m (với m = ca) và ∆ vuông góc với Ox.

+ Nếu b ≠ 0 thì phương trình ∆ có thể đưa về dạng y = nx + p (với n = ab, p =cb ).

Ví dụ:

a) Đường thẳng ∆: 2x + 3 = 0 là tập hợp những điểm M thỏa mãn 2x + 3 = 0, hay x = 32 .

b) Đường thẳng ∆: x + 4y – 2 = 0 là tập hợp những điểm M thỏa mãn x + 3y – 2 = 0, hay y=13x+23 .

2. Phương trình tham số của đường thẳng

Vectơ u khác 0 được gọi là vectơ chỉ phương của đường thẳng ∆ nếu giá của nó song song hoặc trùng với ∆.

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Kết nối tri thức

Nhận xét:

+ Nếu u là vectơ chỉ phương của đường thẳng ∆ thì ku(k ≠ 0) cũng là vectơ chỉ phương của ∆.

+ Đường thẳng hoàn toàn xác định nếu biết một điểm và một vectơ chỉ phương của nó.

+ Vectơ n(a;b) vuông góc với các vectơ và u(b;a)  v(b;a) nên nếu n là vectơ pháp tuyến của đường thẳng ∆ thì u, v là hai vectơ chỉ phương của đường thẳng đó và ngược lại.

Ví dụ: Trong mặt phẳng tọa độ, cho A(2; 1) và B(–2; 3). Hãy chỉ ra một vectơ chỉ phương và một vectơ pháp tuyến của đường thẳng AB.

Hướng dẫn giải

Ta có AB=(22;31)=(4;2)

Khi đó giá của vectơ AB trùng với đường thẳng AB nên đường thẳng AB nhận vectơ AB(4;2) là một vectơ chỉ phương.

Lấy n=(2;4) , khi đó n=(2;4) vuông góc với AB.

Do đó n=(2;4) là một vectơ pháp tuyến của đường thẳng AB.

Vậy AB(4;2) là vectơ chỉ phương, n=(2;4) là một vectơ pháp tuyến của đường thẳng AB.

- Cho đường thẳng ∆ đi qua điểm A(x0; y0) và có vectơ chỉ phương . Khi đó điểm M(x; y) thuộc đường thẳng ∆ khi và chỉ khi tồn tại số thực t sao cho AM=tu, hay x=x0+aty=y0+bt(2)

Hệ (2) được gọi là phương trình tham số của đường thẳng ∆ (t là tham số).

Ví dụ: Lập phương trình tham số của đường thẳng ∆ đi qua điểm A(1; –3) và có vectơ chỉ phương u(2;1).

Hướng dẫn giải

Đường thẳng ∆ đi qua điểm A(1; –3) và có vectơ chỉ phương u(2;1) .

Khi đó, phương trình tham số của đường thẳng ∆ là:x=1+2ty=3t

Đánh giá

0

0 đánh giá