Với giải sách bài tập Toán 10 Bài 19: Phương trình đường thẳng sách Kết nối tri thức hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải SBT Toán lớp 10 Bài 19: Phương trình đường thẳng
Giải SBT Toán 10 trang 31 Tập 2
Bài 7.1 trang 31 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho điểm D(0; 2) và hai vectơ .
a) Viết phương trình tổng quát của đường thẳng d đi qua D và nhận là một vectơ pháp tuyến.
b) Viết phương trình tham số của đường thẳng Δ đi qua D và nhận là một vectơ chỉ phương.
Lời giải:
a)
Phương trình tổng quát của đường thẳng d đi qua D và nhận là một vectơ pháp tuyến là:
1(x – 0) – 3(y – 2) = 0
⇔ x – 3y + 6 = 0
Vậy d: x – 3y + 6 = 0.
b)
Phương trình tham số của đường thẳng ∆ đi qua D và nhận là một vectơ chỉ phương là:
(với t là tham số)
Vậy ∆: .
Lời giải:
Đường thẳng d qua A và vuông góc với đường thẳng BC nhận vectơ làm vectơ pháp tuyến.
= (–2 – 0; 3 + 1) = (–2; 4)
Phương trình của đường thẳng d là:
–2(x – 1) + 4(y – 2) = 0
⇔ –2x + 2 + 4y – 8 = 0
⇔ –2x + 4y – 6 = 0
⇔ x – 2y + 3 = 0
Vậy d: x – 2y + 3 = 0.
Lời giải:
Một vectơ chỉ phương của đường thẳng AB chính là vectơ .
Ta có: = (1; 1)
Đường thẳng AB đi qua điểm A(1; 2) có vectơ chỉ phương = (1; 1) có phương trình tham số là: .
Lời giải:
Dựa vào phương trình tổng quát của đường thẳng ∆: 2x – y + 5 = 0. Đường thẳng ∆ có một vectơ pháp tuyến là nên các vectơ pháp tuyến của ∆ có dạng là . Theo giả thiết ta có:
⇔ 4t2 + t2 = 20
⇔ 5t2 = 20
⇔ t2 = 4
⇔ t = ±2
Với t = 2, ta được vectơ pháp tuyến thỏa mãn yêu cầu đề bài là: = (4; –2)
Với t = – 2, ta được vectơ pháp tuyến thỏa mãn yêu cầu đề bài là: = (–4; 2).
Vậy có hai vectơ pháp tuyến thỏa mãn là = (4; –2) và = (–4; 2).
Lời giải:
Ta có: y = –2x + 3 ⇔ 2x + y – 3 = 0
Phương trình tổng quát của đường thẳng d là: 2x + y – 3 = 0.
Từ phương trình tổng quát ta thấy đường thẳng d: 2x + y – 3 = 0 có một vectơ pháp tuyến là: = (2; 1), do đó, nó có một vectơ chỉ phương là = (1; –2).
Thay x = 1 vào phương trình tổng quát ta có: y = 1.
Chọn điểm (1; 1) thuộc đường thẳng d: 2x + y – 3 = 0. Phương trình tham số của đường thẳng này là:
.
Lời giải:
Do N thuộc đường thẳng ∆ nên tọa độ của N có dạng: (2 – t; 2t).
Ta có: = (2 – t – 2; 2t – 1) = (–t; 2t – 1)
⇔ (– t)2 + (2t – 1)2 = 2
⇔ t2 + 4t2 – 4t + 1 = 2
⇔ 5t2 – 4t – 1 = 0
⇔ t = 1 hoặc t =
Với t = 1, ta có N(1; 2)
Với t = , ta có .
Vậy có hai điểm N thỏa mãn là N(1; 2) và .
Lời giải:
Gọi d là đường trung bình ứng với cạnh BC của tam giác ABC nên d // BC và d đi qua trung điểm M của AB, do đó:
Đường thẳng d nhận vectơ = (–4 – 2; 1 – 3) = (–6; –2) là một vectơ chỉ phương.
Tọa độ trung điểm M là xM = ; yM = .
Suy ra M(1; 1) thuộc d.
Phương trình tham số của d là:
.
Giải SBT Toán 10 trang 32 Tập 2
Bài 7.8 trang 32 SBT Toán 10 Tập 2: Trong mặt phẳng Oxy, cho hình vuông ABCD có A(–1; 0) và B(1; 2).
a) Lập phương trình đường thẳng BC.
b) Tìm toạ độ của điểm C biết rằng hoành độ của điểm C là số dương.
Lời giải:
a)
Do ABCD là hình vuông nên AB và BC vuông góc với nhau tại B.
Do đó, đường thẳng BC nhận vectơ = (1 – (–1); 2 – 0) = (2; 2) làm vectơ pháp tuyến.
Chọn điểm B(1; 2) thuộc đường thẳng BC. Phương trình tổng quát của đường thẳng BC là:
2(x – 1) + 2(y – 2) = 0
⇔ 2x + 2y – 2 – 4 = 0
⇔ 2x + 2y – 6 = 0
⇔ x + y – 3 = 0.
Vậy phương trình tổng quát đường thẳng BC: x + y – 3 = 0.
b)
Từ phương trình đường thẳng BC là: x + y – 3 = 0 ta có:
y = 3 – x
Điểm C thuộc đường thẳng BC nên tọa độ của nó có dạng: (t; 3 – t)
= (t – 1; 3 – t – 2) = (t – 1; 1 – t)
Do ABCD là hình vuông nên ta có:
BC = AB
⇔ (t – 1)2 + (1 – t)2 = ( )2
⇔ t2 – 2t + 1 + 1 – 2t + t2 = 8
⇔ 2t2 – 4t – 6 = 0
⇔ t = 3 hay t = –1
Với t = 3, ta có: C (3; 0)
Với t = –1, ta có: C (–1; 4)
Mà hoành độ của điểm C là số dương nên C(3; 0) thỏa mãn yêu cầu đề bài.
Lời giải:
Gắn hệ trục toạ độ Oxy như hình vẽ. Khi đó để tận dụng tối đa chiều cao có thể khi kê tủ lạnh thì bố mẹ bạn Nam sẽ kê tủ sát vào trục Oy.
Do đó để kê được một chiếc tủ lạnh 2 cánh với bề ngang 90 cm thì chiều cao của tủ phải nhỏ hơn tung độ của điểm E thuộc đường thẳng BC với hoành độ điểm E bằng 90.
Ta có:
B(150;150), C(0; 250)
Đường thẳng BC nhận vectơ là vectơ chỉ phương nên có vectơ pháp tuyến là . Phương trình đường thẳng BC là:
100(x – 0) + 150(y – 250) = 0 ⇔ 2x + 3y – 750 = 0.
Điểm E thuộc BC có hoành độ bằng 90 nên tung độ của E tính theo công thức
2.90 + 3yE – 750 = 0 ⇔ yE = 190
Do 183 cm < 190 cm nên bố mẹ bạn Nam có thể kê chiếc tủ lạnh có bề ngang là 90 cm và chiều cao 183 cm.
Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách
Bài 21: Đường tròn trong mặt phẳng tọa độ
Lý thuyết Phương trình đường thẳng
1. Phương trình tổng quát của đường thẳng
- Vectơ khác được gọi là vectơ pháp tuyến của đường thẳng ∆ nếu giá của nó vuông góc với ∆.
Nhận xét:
+ Nếu là vectơ pháp tuyến của đường thẳng ∆ thì (k ≠ 0) cũng là vectơ pháp tuyến của ∆.
+ Đường thẳng hoàn toàn xác định nếu biết một điểm và một vectơ pháp tuyến của nó.
Ví dụ: Cho hai điểm A(2; 1) và B(0; 4). Hãy chỉ ra một vectơ pháp tuyến của đường trung trực của đoạn thẳng AB.
Hướng dẫn giải
Ta có
Vì đường trung trực của đoạn thẳng AB là đường thẳng vuông góc với AB nên có vectơ pháp tuyến là .
Vậy vectơ pháp tuyến của đường trung trực của đoạn thẳng AB là .
- Trong mặt phẳng tọa độ, cho đường thẳng ∆ đi qua điểm A(x0; y0) và có vectơ pháp tuyến . Khi đó M(x; y) thuộc ∆ khi và chỉ khi a(x – x0) + b(y – y0) = 0.
- Trong mặt phẳng tọa độ, mọi đường thẳng đều có phương trình tổng quát dạng ax + by + c = 0, với a và b không đồng thời bằng 0.
Ngược lại, mỗi phương trình dạng ax + by + c = 0, với a và b không đồng thời bằng 0, đều là phương trình của một đường thẳng, nhận là một vectơ pháp tuyến.
Ví dụ: Trong mặt phẳng tọa độ, lập phương trình tổng quát của đường thẳng ∆ đi qua điểm A(1; 2) và nhận là một vectơ pháp tuyến.
Hướng dẫn giải
Điểm A(1; 2) thuộc ∆ và là một vectơ pháp tuyến của ∆.
Khi đó đường thẳng ∆ có phương trình là: – 1(x – 1) + 3(y – 2) = 0 hay – x + 3y – 5 = 0.
Vậy phương trình tổng quát của đường thẳng ∆ là – x + 3y – 5 = 0.
Nhận xét: Trong mặt phẳng tọa độ, cho đường thẳng ∆: ax + by + c = 0.
+ Nếu b = 0 thì phương trình ∆ có thể đưa về dạng x = m (với m = ) và ∆ vuông góc với Ox.
+ Nếu b ≠ 0 thì phương trình ∆ có thể đưa về dạng y = nx + p (với n = , p = ).
Ví dụ:
a) Đường thẳng ∆: 2x + 3 = 0 là tập hợp những điểm M thỏa mãn 2x + 3 = 0, hay x = .
b) Đường thẳng ∆: x + 4y – 2 = 0 là tập hợp những điểm M thỏa mãn x + 3y – 2 = 0, hay .
2. Phương trình tham số của đường thẳng
Vectơ khác được gọi là vectơ chỉ phương của đường thẳng ∆ nếu giá của nó song song hoặc trùng với ∆.
Nhận xét:
+ Nếu là vectơ chỉ phương của đường thẳng ∆ thì (k ≠ 0) cũng là vectơ chỉ phương của ∆.
+ Đường thẳng hoàn toàn xác định nếu biết một điểm và một vectơ chỉ phương của nó.
+ Vectơ vuông góc với các vectơ và và nên nếu là vectơ pháp tuyến của đường thẳng ∆ thì , là hai vectơ chỉ phương của đường thẳng đó và ngược lại.
Ví dụ: Trong mặt phẳng tọa độ, cho A(2; 1) và B(–2; 3). Hãy chỉ ra một vectơ chỉ phương và một vectơ pháp tuyến của đường thẳng AB.
Hướng dẫn giải
Ta có
Khi đó giá của vectơ trùng với đường thẳng AB nên đường thẳng AB nhận vectơ là một vectơ chỉ phương.
Lấy , khi đó vuông góc với .
Do đó là một vectơ pháp tuyến của đường thẳng AB.
Vậy là vectơ chỉ phương, là một vectơ pháp tuyến của đường thẳng AB.
- Cho đường thẳng ∆ đi qua điểm A(x0; y0) và có vectơ chỉ phương . Khi đó điểm M(x; y) thuộc đường thẳng ∆ khi và chỉ khi tồn tại số thực t sao cho , hay
Hệ (2) được gọi là phương trình tham số của đường thẳng ∆ (t là tham số).
Ví dụ: Lập phương trình tham số của đường thẳng ∆ đi qua điểm A(1; –3) và có vectơ chỉ phương .
Hướng dẫn giải
Đường thẳng ∆ đi qua điểm A(1; –3) và có vectơ chỉ phương .
Khi đó, phương trình tham số của đường thẳng ∆ là: