Với giải Bài 4.39 trang 66 SBT Toán lớp 7 Kết nối tri thức chi tiết trong Bài 15: Các trường hợp bằng nhau của tam giác vuông giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông
Bài 4.39 trang 66 SBT Toán 7 Tập 1: Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:
a) AF = CE.
b) AF // CE.
Hướng dẫn giải
a) Vì ABCD là hình chữ nhật nên AD = BC; AB = CD.
Ta có: AD = AE + ED; BC = BF + FC mà FC = AE (gt) và AD = BC nên ED = BF.
Vì ABCD là hình chữ nhật nên .
Xét ∆ABF và ∆CDE có:
AB = CD (chứng minh trên)
BF = ED (chứng minh trên)
(do )
Do đó, ∆ABF = ∆CDE (hai cạnh góc vuông).
Suy ra, AF = CE.
b) Vì ∆ABF = ∆CDE nên (hai góc tương ứng).
Lại có ABCD là hình chữ nhật nên AD // BC nên (hai góc so le trong).
Ta có: ; nên .
Mà hai góc này ở vị trí đồng vị
Nên AF // CE (điều phải chứng minh).
Xem thêm các bài giải SBT Toán 7 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Bài 15: Các trường hợp bằng nhau của tam giác vuông
Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng
Bài 17: Thu thập và phân loại dữ liệu