Với lời giải SBT Toán 10 trang 103 Tập 1 chi tiết trong Bài tập cuối chương 5 sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải SBT Toán lớp 10 Bài tập cuối chương 5
Bài 4 trang 103 SBT Toán 10 Tập 1: Chứng minh rằng với hai vectơ không cùng phương và , ta có: .
Lời giải:
Vẽ ba điểm O, A, B sao cho . Ta có
Trong tam giác OAB ta có bất đẳng thức:
≤ OB ≤ OA + AB
Suy ra .
Bài 5 trang 103 SBT Toán 10 Tập 1: Cho hình ngũ giác đều ABCDE tâm O. Chứng minh rằng: .
Lời giải:
Đặt =
Ta có: =
Do OA nằm trên đường phân giác của và của hai tam giác cân BOE và DOC nên ta có các vectơ và nằm trên đường thẳng OA, suy ra nằm trên đường thẳng OA.
Chứng minh tương tự ta có cũng đồng thời nằm trên đường thẳng OB. Như vậy =
Vậy
Bài 6 trang 103 SBT Toán 10 Tập 1: Cho tam giác ABC, gọi A’ là điểm đối xứng với B qua A, gọi B’ là điểm đối xứng với C qua B, gọi C’ là điểm đối xứng với A qua C. Chứng minh rằng với một điểm O tùy ý, ta có: .
Lời giải:
A’ là điểm đối xứng với B qua A nên = .
B’ là điểm đối xứng với C qua B nên = .
C’ là điểm đối xứng với A qua C nên = .
Ta có:
Vậy .
Bài 7 trang 103 SBT Toán 10 Tập 1: Tam giác ABC là tam giác gì nếu nó thỏa mãn một trong các điều kiện sau đây?
a) ;
b) Vectơ vuông góc với vectơ .
Lời giải:
a) Gọi M là trung điểm BC ta có:
Khi đó tam giác ABC vuông tại A.
b) Vectơ vuông góc với vectơ ⇔ . =
hay . = .
Suy ra AB2 – AC2 = 0 hay AB = AC. Khi đó tam giác ABC cân tại A.
Vậy Vectơ vuông góc với vectơ khi tam giác ABC cân tại A.
Bài 8 trang 103 SBT Toán 10 Tập 1: Tứ giác ABCD là tứ giác gì nếu nó thỏa mãn một trong các điều kiện sau đây?
a) ;
b) .
Lời giải:
a) ⇒ ABCD là hình bình hành.
b)
Như vậy ta có ABCD là hình thang.
Bài 9 trang 103 SBT Toán 10 Tập 1: Cho tam giác ABC, trên cạnh AB lấy hai điểm M, N sao cho AM = MN = NB. Chứng minh rằng hai tam giác ABC và MNC có cùng trọng tâm.
Lời giải:
Ta có: MA = NB và hai vectơ , cùng phương, ngược chiều ⇒ + =
Gọi G là trọng tâm tam giác ABC.
Ta có:
Vậy G cũng là trọng tâm tam giác MNC.
Vậy hai tam giác ABC và MNC có cùng trọng tâm.
Bài 10 trang 103 SBT Toán 10 Tập 1: Cho ba điểm O, M, N và số thực k. Lấy các điểm M’ và N’ sao cho , . Chứng minh rằng: .
Lời giải:
Ta có:
Vậy .
Bài 11 trang 103 SBT Toán 10 Tập 1: Cho tam giác ABC, O là điểm sao cho ba vectơ có độ dài bằng nhau và . Tính các góc , , .
Lời giải:
Ta có OA = OB = OC nên O là tâm đường tròn ngoại tiếp tam giác ABC.
Lại có nên O cũng là trọng tâm tam giác ABC.
Suy ra ABC là tam giác đều ( vì tâm đường tròn ngoại tiếp và trọng tâm trùng nhau).
⇒ AB = BC = CA.
Như vậy = = = = 120° ( vì đều là góc ở tâm chắn các cung bằng nhau ).
Bài 12 trang 103 SBT Toán 10 Tập 1: Cho ngũ giác ABCDE. Gọi M, N, P, Q, R lần lượt là trung điểm các cạnh AB, BC, CD, DE, EA. Chứng minh hai tam giác EMP và NQR có cùng trọng tâm.
Lời giải:
Gọi G là trọng tâm tam giác NRQ, ta có
N là trung điểm của AB nên
Tương tự ta có: và
( Do M, N lần lượt là trung điểm của AB và CD nên
và
Suy ra G cũng là trọng tâm tam giác EMP.
Vậy hai tam giác EMP và NQR có cùng trọng tâm.
Xem thêm các bài giải sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Giải SBT Toán 10 trang 101 Tập 1
Giải SBT Toán 10 trang 102 Tập 1
Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 4: Tích vô hướng của hai vectơ
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu