Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 10 Bài tập cuối chương 5 chi tiết sách Toán 10 Tập 1 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài tập cuối chương 5
Giải toán lớp 10 trang 102 Tập 1 Chân trời sáng tạo
Bài 1 trang 102 Toán lớp 10: Cho ba vectơ đều khác vectơ . Các khẳng định sau đúng hay sai?
a) Nếu hai vectơ cùng phương với thì và cùng phương.
b) Nếu hai vectơ cùng ngược hướng với thì và cùng hướng.
Phương pháp giải:
Nhận xét về giá và hướng của hai vectơ với vectơ để rút ra kết luận.
Lời giải:
a)
+) Vectơ cùng phương với vectơ nên giá của vectơ song song với giá của vectơ
+) Vectơ cùng phương với vectơ nên giá của vectơ song song với giá của vectơ
Suy ra giá của vectơ và vectơ song song với nhau nên và cùng phương
Vậy khẳng định trên đúng
b) Giả sử vectơ có hướng từ A sang B
+) Vectơ ngược hướng với vectơ nên giá của vectơ song song với giá của vectơ và có hướng từ B sang A
+) Vectơ ngược hướng với vectơ nên giá của vectơ song song với giá của vectơ và có hướng từ B sang A
Suy ra, hai vectơ và cùng hướng
Vậy khẳng định trên đúng
a) Tính độ dài của các vectơ .
b) Tìm trong hình các cặp vectơ đối nhau và có độ dài bằng .
Phương pháp giải:
a) Bước 1: Tính độ dài AC, BD
Bước 2: Tính độ dài vectơ
b) Bước 1: Tìm các đoạn thẳng có độ dài là
Bước 2: Từ các đoạn thẳng trên xác định các vecto cùng phương (giá song song hoặc trùng nhau) nhưng ngược hướng.
Lời giải:
a) Ta có:
+)
+)
b) O là giao điểm của hai đường chéo nên ta có:
Dựa vào hình vẽ ta thấy AO và CO cùng nằm trên một đường thẳng; BO và DO cùng nằm trên một đường thẳng
Suy ra các cặp vectơ đối nhau và có độ dài bằng là:
và ; và ; và ; và
Phương pháp giải:
Quy tắc ba điểm
Quy tắc hình bình hành (với ABCD là hình bình hành);
Quy tắc hiệu:
Áp dụng các quy tắc trên để xác định vecto rồi tính độ dài.
Lời giải:
+) ABCD là hình thoi nên cũng là hình bình hành
Áp dụng quy tắc hình bình hành ta có:
+)
+)
a) Tìm tổng của các vectơ và ; và ; và .
b) Tìm các vectơ hiệu: .
c) Chứng minh .
Phương pháp giải:
a) Chỉ ra các hình bình hành, từ đó suy ra các vectơ bằng nhau và vận dụng quy tắc hình bình hành.
b) Quy tắc hiệu: , quy tắc ba điểm và thay thế các vectơ bằng nhau
c) Thay thế các vectơ bằng nhau ; sử dụng quy tắc hình bình hành (với ABCD là hình bình hành)
Lời giải:
a) Ta có: và
Suy ra
+)
+) ABCD là hình bình hành nên
+) Ta có là hình bình hành nên
(vì AMED là hình bình hành)
b) Ta có:
+)
+)
+)
c) Ta có:
Áp dụng quy tắc hình bình hành vào hình bình hành ABCD ta có
Từ đó suy ra (đpcm)
Giải toán lớp 10 trang 103 Tập 1 Chân trời sáng tạo
a) ;
b) .
Phương pháp giải:
Sử dụng tính chất
Lời giải:
a)
Vậy cùng hướng.
b)
Vậy vuông góc với nhau.
Bài 6 trang 103 Toán lớp 10: Cho . So sánh độ dài, phương và hướng của hai vectơ và .
Lời giải:
suy ra hai vectơ và là hai vecto đối nhau nên chúng cùng phương, ngược hướng và có độ dài bằng nhau.
Phương pháp giải:
Chứng minh thông qua ABCD là hình bình hành.
Lời giải:
Với 4 điểm A, B, C, D ta có: khi và chỉ khi tứ giác ABDC là hình bình hành
Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.
Nói cách khác: trung điểm của hai đoạn thẳng AD và BC trùng nhau.
Vậy ta có điều phải chứng minh.
Phương pháp giải:
Bước 1: Sử dụng quy tắc ba điểm
Bước 2: Xác định các cặp vectơ đối nhau từ các hình bình hành và là hai vectơ đối nhau với ABCD là hình bình hành
Bước 3: Sử dụng tính chất của vectơ đối và là hai vectơ đối nhau thì
Lời giải:
(đpcm)
Phương pháp giải:
Bước 1: Dựa vào hình 2 xác định các vectơ tương ứng với vận tốc của máy bay, vận tốc so với mặt đất
Bước 2: Dựa vào mối liên hệ giữa các vectơ đã cho xác định vectơ tương ứng với vận tốc gió
Bước 3: Áp dụng định lý cosin tìm tốc độ của gió
Lời giải:
Từ giả thiết ta có:
+) Vectơ tương ứng với vận tốc máy bay là vectơ
+) Vectơ tương ứng với vận tốc máy bay so với mặt đất là vectơ
+) Vectơ tương ứng với vận tốc gió là vectơ
Ta có :
Áp dụng định lý cosin ta có:
(m/s)
Vậy tốc độ của gió gần bằng 16 m/s
Phương pháp giải:
Bước 1: Qua M kẻ các đường thẳng song song với AB, AC, BC
Bước 2: Xác định các tam giác đều, hình bình hành sau đó áp dụng vào biểu thức vectơ, trong tam giác đều thì đường cao vừa là trung tuyến, quy tắc hình bình hành (với ABCD là hình bình hành)
Bước 3: Sử dụng quy tắc ba điểm , tính chất trọng tâm của tam giác (với G là trọng tâm của tam giác ABC)
Lời giải:
Qua M kẻ các đường thẳng
Từ đó ta có:
Suy ra các tam giác đều
Áp dụng tính chất trung tuyến (với M là trung điểm của BC) ta có:
Ta có: các tứ giác là hình bình hành
Áp dụng quy tắc hình bình hành ta có
(đpcm)
Vậy
Phương pháp giải:
Bước 1: Sử dụng các tính chất trong tam giác vuông xác định độ lớn của các lực
Bước 2: Xác định góc giữa các lực và hướng dịch chuyển
Bước 3: Sử dụng công thức (với là vectơ thể hiện độ dịch chuyển và quãng đường mà vật đi được)
Lời giải:
Ta xác định được các độ lớn:
(N)
Dựa vào hình vẽ ta có:
Áp dụng công thức tính công sinh ra bởi lực ta có:
a) Tính độ dài của các vectơ .
b) Tốc độ dịch chuyển của thuyền so với bờ là bao nhiêu?
c) Hướng di chuyển của thuyền lệch một góc bao nhiêu so với bờ?
Phương pháp giải:
a) Sử dụng tính chất trong tam giác vuông (với c là cạnh huyền của tam giác vuông và a, b là cạnh góc vuông)
b) Chỉ ra kết quả độ dài vectơ đã tính được ở câu a)
c) Sử dụng tính chất trong tam giác vuông (với c là cạnh huyền của tam giác vuông và a, b là cạnh góc vuông)
Lời giải:
a) Ta có:
Dựa vào hình vẽ ta thấy và
Áp dụng tính chất trong tam giác vuông ta có:
b) Tốc độ dịch chuyển của thuyền so với bờ là m/s
c) Nước có hướng dichuyển song song với bờ nên hướng di chuyển của thuyền
so với bờ tương đương với hướng di chuyển của thuyền so với nước
Suy ra góc lệch giữa hướng di chuyển của thuyền và bờ là
Ta có:
Vậy hướng di chuyển của thuyền lệch một góc so với bờ
Lý thuyết Chương 5: Vectơ
1. Định nghĩa vectơ
Vectơ là một đoạn thẳng có hướng, nghĩa là đã chỉ ra điểm đầu và điểm cuối.
+ Vectơ có điểm đầu là A, điểm cuối là B được kí hiệu là
, đọc là vectơ .
+ Đường thẳng đi qua hai điểm A và B gọi là giá của vectơ .
+ Độ dài của đoạn thẳng AB gọi là độ dài của và được kí hiệu là . Như vậy ta có .
Chú ý: Một vectơ khi không cần chỉ rõ điểm đầu và điểm cuối có thể viết là
2. Hai vectơ cùng phương, cùng hướng
Hai vectơ được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.
Ví dụ: Tìm các vectơ cùng phương trong hình bên dưới.
Hướng dẫn giải
Trong hình trên, ta có:
+) có giá là đường thẳng MN, có giá là đường thẳng PQ, mà hai đường thẳng MN và PQ trùng nhau.
Do đó và là hai vectơ cùng phương vì chúng có giá trùng nhau.
+) Ta có: có giá là đường thẳng EF, có giá là đường thẳng GH, mà hai đường thẳng EF và GH song song với nhau.
Do đó và là hai vectơ cùng phương vì chúng có giá song song.
Chú ý:
+ Trong hình trên, hai vectơ và cùng phương và có cùng hướng đi từ trái sang phải. Ta nói và là hai vectơ cùng hướng.
+ Hai vectơ và cùng phương nhưng ngược hướng với nhau ( có hướng từ trên xuống dưới và có hướng từ dưới lên trên). Ta nói hai vectơ và là hai vectơ ngược hướng.
Nhận xét:
+ Hai vectơ cùng phương chỉ có thể cùng hướng hoặc ngược hướng.
+ Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi hai vectơ và cùng phương.
Giải thích: Ta thấy nếu ba điểm A, B, C thẳng hàng thì hai vectơ và có giá trùng nhau nên chúng cùng phương. Ngược lại, nếu hai vectơ và cùng phương thì ta suy ta hai đường thẳng AB và AC phải song song hoặc trùng nhau. Mà hai đường thẳng này có điểm A là điểm chung, do đó đường thẳng AB và AC trùng nhau. Khi đó ta có ba điểm A, B, C thẳng hàng. Vì vậy, ba điểm A, B, C thẳng hàng khi và chỉ khi hai vectơ và cùng phương.
3. Vectơ bằng nhau – Vectơ đối nhau
Hai vectơ và được gọi là bằng nhau nếu chúng cùng hướng và có cùng độ dài, kí hiệu .
Hai vectơ và được gọi là đối nhau nếu chúng ngược hướng và có cùng độ dài, kí hiệu . Khi đó vectơ được gọi là vectơ đối của vectơ .
Chú ý:
+ Cho vectơ và điểm O, ta luôn tìm được một điểm A duy nhất sao cho . Khi đó độ dài của là độ dài đoạn thẳng OA, kí hiệu là .
+ Cho đoạn thẳng MN, ta luôn có .
4. Vectơ-không
Vectơ có điểm đầu và điểm cuối trùng nhau gọi là vectơ-không, kí hiệu là .
Chú ý:
+ Quy ước: vectơ-không có độ dài bằng 0.
+ Vectơ-không luôn cùng phương, cùng hướng với mọi vectơ.
+ Mọi vectơ-không đều bằng nhau: , với mọi điểm A, B, C,...
+ Vectơ đối của vectơ-không là chính nó.
5. Tổng của hai vectơ
Cho hai vectơ và . Từ một điểm A tùy ý, lấy hai điểm B, C sao cho . Khi đó được gọi là tổng của hai vectơ và và được kí hiệu là .
Vậy .
Phép toán tìm tổng của hai vectơ được gọi là phép cộng vectơ.
Quy tắc ba điểm
Với ba điểm M, N, P, ta có .
Chú ý: Khi cộng vectơ theo quy tắc ba điểm, điểm cuối của vectơ thứ nhất phải là điểm đầu của vectơ thứ hai.
Quy tắc hình bình hành
Nếu OACB là hình bình hành thì ta có .
6. Tính chất của phép cộng các vectơ
Phép cộng vectơ có các tính chất sau:
+ Tính chất giao hoán: .
+ Tính chất kết hợp: .
+ Với mọi , ta luôn có: .
Chú ý: Từ tính chất kết hợp, ta có thể xác định được tổng của ba vectơ ,kí hiệu là với .
Chú ý: Cho vectơ tùy ý .
Ta có .
Tổng hai vectơ đối nhau luôn bằng vectơ-không: .
7. Hiệu của hai vectơ
Cho hai vectơ và . Hiệu của hai vectơ và là vectơ và kí hiệu là .
Phép toán tìm hiệu của hai vectơ được gọi là phép trừ vectơ.
Chú ý: Cho ba điểm O, A, B, ta có:.
8. Tính chất vectơ của trung điểm đoạn thẳng và trọng tâm tam giác
Điểm M là trung điểm của đoạn thẳng AB khi và chỉ khi .
Điểm G là trọng tâm của tam giác ABC khi và chỉ khi .
9. Tích của một số với một vectơ và các tính chất
Cho số k ≠ 0 và . Tích của số k với là một vectơ, kí hiệu là .
Vectơ cùng hướng với nếu k > 0, ngược hướng với nếu k < 0 và có độ dài bằng .
Ta quy ước và .
Người ta còn gọi tích của một số với một vectơ là tích của một vectơ với một số.
Tính chất:
Với hai vectơ và bất kì, với mọi số thực h và k, ta có:
+) ;
+) ;
+) ;
+) ;
+) .
10. Điều kiện để hai vectơ cùng phương
Hai vectơ và () cùng phương khi và chỉ khi có số k sao cho .
Nhận xét: Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi có số k ≠ 0 để .
Chú ý: Cho hai vectơ và không cùng phương. Với mỗi luôn tồn tại duy nhất cặp số thực (m; n) sao cho .
11. Góc giữa hai vectơ
Cho hai vectơ và đều khác . Từ một điểm O bất kì ta vẽ , .
Góc với số đo từ 0° đến 180° được gọi là góc giữa hai vectơ và .
Ta kí hiệu góc giữa hai vectơ và là .
Nếu thì ta nói rằng và vuông góc với nhau, kí hiệu .
Chú ý:
+ Từ định nghĩa, ta có .
+ Góc giữa hai vectơ cùng hướng và khác luôn bằng 0°.
+ Góc giữa hai vectơ ngược hướng và khác luôn bằng 180°.
+ Trong trường hợp có ít nhất một trong hai vectơ hoặc là thì ta quy ước số đo góc giữa hai vectơ đó là tùy ý (từ 0° đến 180°).
12. Tích vô hướng của hai vectơ
Cho hai vectơ và đều khác .
Tích vô hướng của và là một số, kí hiệu là , được xác định bởi công thức:.
Chú ý:
a) Trường hợp có ít nhất một trong hai vectơ và bằng , ta quy ước .
b) Với hai vectơ và , ta có .
c) Khi thì tích vô hướng được kí hiệu là và được gọi là bình phương vô hướng của vectơ .
Ta có . Vậy bình phương vô hướng của một vectơ luôn bằng bình phương độ dài của vectơ đó.
Chú ý: Trong Vật lí, tích vô hướng của và biểu diễn công A sinh bởi lực khi thực hiện độ dịch chuyển . Ta có công thức
13. Tính chất của tích vô hướng
Với ba vectơ bất kì và mọi số k, ta có:
; ; .
Nhận xét: Chứng minh tương tự, ta cũng có:
;
.
Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 4: Tích vô hướng của hai vecto
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu