Giải SBT Toán 10 trang 80 Tập 1 Chân trời sáng tạo

589

Với lời giải SBT Toán 10 trang 80 Tập 1 chi tiết trong Bài tập cuối chương 4 sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài tập cuối chương 4

A. Trắc nghiệm

Bài 1 trang 80 SBT Toán 10 Tập 1: Khẳng định nào sau đây là đúng?

A. sinα = sin( 180° – α );

B. cosα = cos( 180° – α );

C. tanα = tan( 180° – α );

D. cotα = cot( 180° – α );

Lời giải

Đáp án đúng là A

Ta có sin của hai góc bù nhau thì bằng nhau. Côsin, tan và côtan của hai góc bù nhau thì đối nhau. Vậy khẳng định đúng là A.

Bài 2 trang 80 SBT Toán 10 Tập 1Trong các khẳng định sau đây, khẳng định nào sai?

A. cos45° = sin45°;

B. cos45° = sin135°;

C. cos30° = sin120°;

D. sin60° = cos120°.

Lời giải

Đáp án đúng là D

cos45° = sin( 90° – 45° ) = sin45°. Khẳng định A đúng.

cos45° = sin( 90° – 45° ) = sin45° = sin ( 180° – 45° ) = sin135°. Khẳng định B đúng.

cos30° = sin ( 90° – 30° ) = sin60° = sin ( 180° – 60° ) = sin120°. Khẳng định C đúng.

Có sin60° = cos30° ≠ cos120°. Khẳng định D sai.

Vậy chọn đáp án D.

Bài 3 trang 80 SBT Toán 10 Tập 1Bất đẳng thức nào dưới đây là đúng?

A. sin90° < sin150°;

B. sin90°15’ < sin90°30’;

C. cos90°30’ > cos100°;

D. cos150° > cos120°.

Lời giải

Đáp án đúng là C

Ta có:

sin90° = 1 mà sin150° = 12  sin90° > sin150°. Vì vậy A sai.

sin90°15’ = 0,99999, sin90°30’ = 0,99996  sin90°15’ > sin90°30’. Vì vậy B sai.

cos90°30’ ≈ – 8,72. 10-3 , cos100° ≈ – 0,17  cos90°30’ > cos100°. Vì vậy C đúng.

cos150° = 32, cos120° = 12  cos150° < cos120°. Vì vậy D sai.

Chọn đáp án C.

Bài 4 trang 80 SBT Toán 10 Tập 1: Trong các đẳng thức sau đây, đẳng thức nào là đúng?

A. sin150° = 32;

B. cos150° = 32;

C. tan150° = 13;

D. cot150° = 3.

Lời giải

Đáp án đúng là C

Sử dụng máy tính cầm tay ta tính được

sin150° = 12, cos150° = 32, tan150° = 13, cot150° = -3.

Vậy khẳng định C đúng.

Bài 5 trang 80 SBT Toán 10 Tập 1: Cho tam giác ABC có BC = a, AC = b, AB = c. Mệnh đề nào sau đây đúng?

A. Nếu b2 + c2 – a2 > 0 thì góc A nhọn;

B. Nếu b2 + c2 – a2 > 0 thì góc A tù;

C. Nếu b2 + c2 – a2 < 0 thì góc A nhọn;

D. Nếu b2 + c2 – a2 < 0 thì góc A vuông.

Lời giải

Đáp án đúng là A

Theo định lí côsin ta có: a2 = b2 + c2 – 2bccosA

Nếu b2 + c2 – a2 > 0 hay b2 + c2 > a2 thì 2bccosA > 0 hay cosA > 0 ( b,c là cạnh tam giác nên b,c > 0 ). Khi đó A^ < 90° hay góc A nhọn.

Nếu b2 + c2 – a2 < 0 hay b2 + c2 < a2 thì 2bccosA < 0 hay cosA < 0 ( b,c là cạnh tam giác nên b,c > 0 ). Khi đó A^ > 90° hay góc A tù.

Như vậy đáp án đúng là A.

Bài 6 trang 80 SBT Toán 10 Tập 1Cho tam giác ABC có AB = 4 cm, BC = 7 cm, CA = 9 cm. Giá trị cosA là:

A. 23;

B. 13;

C. -23;

D. 12.

Lời giải

Đáp án đúng là A

Áp dụng hệ quả định lí côsin ta có:

cosA = AC2+AB2BC22AB.AC​ 42+92722.4.9 23.

Vậy chọn đáp án A.

Bài 7 trang 80 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64cm2. Giá trị sinA là:

A. 32;

B. 38;

C. 45;

D. 89.

Lời giải

Đáp án đúng là D

Ta có: S = 12AB.AC. sinA  sinA = 2SAB.AC = 64.218.8=89.

Vậy đáp án đúng là D.

Bài 8 trang 80 SBT Toán 10 Tập 1Cho tam giác ABC vuông cân tại A có AB = AC = 30 cm. Hai đường trung tuyến BF và CE cắt nhau tại G. Diện tích tam giác GFC là:

A. 50 cm2;

B. 502 cm2;

C. 75 cm2;

D. 15105 cm2.

Lời giải

Đáp án đúng là C

Sách bài tập Toán 10 Bài tập cuối chương 4 - Chân trời sáng tạo (ảnh 1)

Kẻ GH vuông góc với AC.

G là trọng tâm tam giác ABC  GF = 13BF .

Xét tam giác GFH và tam giác BFA:

GHF^=BAF^= 90°

GFH^=BFA^(hay chung GFH^)

 tam giác GFH và tam giác BFA đồng dạng (g.g)

 GHAB=GFBF=13 ( Tính chất hai tam giác đồng dạng)

 GH = 10 cm

Lại có FC = 12AC = 15 cm

 SGFC = 10.15. 12 = 75 cm2

Vậy đáp án C đúng.

Xem thêm các bài giải sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Giải SBT Toán 10 trang 81 Tập 1

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Giải tam giác và ứng dụng thực tế

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Bài 3: Tích của một số với một vectơ

Đánh giá

0

0 đánh giá