Sách bài tập Toán 10 Bài 1 (Chân trời sáng tạo): Khái niệm vectơ

2.3 K

Với giải sách bài tập Toán 10 Bài 1: Khái niệm vectơ sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài 1: Khái niệm vectơ

Giải SBT Toán 10 trang 91 Tập 1

Bài 1 trang 91 SBT Toán 10 Tập 1: Bạn hãy tìm sự khác biệt giữa hai đại lượng sau:

- Chiếc xe máy có giá tiền là 30 triệu đồng.

- Chiếc thuyền chạy với vận tốc là 30 km/h theo hướng tây nam.

Lời giải:

- Chiếc xe máy có giá tiền là 30 triệu đồng: đại lượng vô hướng.

- Chiếc thuyền chạy với vận tốc là 30 km/h theo hướng tây nam: đại lượng chỉ rõ giá trị và hướng.

Bài 2 trang 91 SBT Toán 10 Tập 1Trong các đại lượng sau, đại lượng nào cần được biểu diễn bởi vectơ?

Nhiệt độ, lực, thể tích, tuổi, độ dịch chuyển, vận tốc.

Lời giải:

Các đại lượng cần được biểu diễn bởi vectơ: lực, độ dịch chuyển, vận tốc bởi đây là những đại lượng có hướng.

Bài 3 trang 91 SBT Toán 10 Tập 1: Cho hình thang ABCD với hai đáy là AB, CD và có hai đường chéo cắt nhau tại O.

a) Gọi tên hai vectơ cùng hướng với AO.

b) Gọi tên hai vectơ ngược hướng với AB.

Lời giải:

Sách bài tập Toán 10 Bài 1: Khái niệm vectơ - Chân trời sáng tạo (ảnh 1)

a) Hai vectơ cùng hướng với AOAC và OC.

b) Hai vectơ ngược hướng với ABBA và CD.

Bài 4 trang 91 SBT Toán 10 Tập 1: Cho hình thoi ABCD cạnh bằng a có tâm O và BAD^ = 60°.

a) Tìm trong hình hai vectơ bằng nhau và có độ dài bằng a32.

b) Tìm trong hình hai vectơ đối nhau và có độ dài bằng a3.

Lời giải:

Sách bài tập Toán 10 Bài 1: Khái niệm vectơ - Chân trời sáng tạo (ảnh 1)

a) Ta có hình thoi ABCD có cạnh a. AO là tia phân giác của BAD^ ( tính chất hình thoi )  DAO^ = 30°.

AC  BD ( tính chất hình thoi )  AOD^ = 90°  Tam giác AOD vuông tại O.

Xét tam giác AOD vuông tại O: cosDAO^ =  cos30° = AOAD  AO = a. cos30° = a32.

Hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường ( tính chất hình thoi )

 AO = OC = a32.

Vậy ta có hai vectơ AO và OC bằng nhau và có độ dài bằng a32.

b) Ta có AC = AO + OC = a3.

Vậy ta có hai vectơ AC và CA đối nhau và có độ dài a3.

Bài 5 trang 91 SBT Toán 10 Tập 1: Cho hình chữ nhật ABCD có O là giao điểm hai đường chéo. Hãy chỉ ra một cặp vectơ:

a) cùng hướng;

b) ngược hướng;

c) bằng nhau.

Lời giải:

Sách bài tập Toán 10 Bài 1: Khái niệm vectơ - Chân trời sáng tạo (ảnh 1)

a) AO cùng hướng với AC.

b) DO ngược hướng với BD.

c) AB=DC ( do có cùng hướng và AB = DC ).

Bài 6 trang 91 SBT Toán 10 Tập 1Gọi O là tâm của hình bát giác đều ABCDEFGH.

a) Tìm hai vectơ khác 0​ và cùng hướng với OA​.

b) Tìm vectơ bằng vectơ BD​.

Lời giải:

Sách bài tập Toán 10 Bài 1: Khái niệm vectơ - Chân trời sáng tạo (ảnh 1)

a) Hai vectơ khác 0​ và cùng hướng với OA​EO​EA​.

b) Ta có: DOB^=28.360°=90° DH vuông góc với FB.

Xét tứ giác FDBH: Hai đường chéo DH và FB vuông góc với nhau tại O là trung điểm của mỗi đường nên FDBH là hình thoi. ( DHNB hình thoi )

Lại có FB = DH ( do đều là đường chéo của bát giác đều ) nên FDBH là hình vuông. (DHNB hình vuông )

 HF = BD và HF // BD.

Như vậy ta có vectơ bằng vectơ BD​ là HF​.

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 4

Bài 2: Tổng và hiệu của hai vectơ

Bài 3: Tích của một số với một vectơ

Bài 4: Tích vô hướng của hai vectơ

Lý thuyết Khái niệm vectơ

1. Định nghĩa vectơ

Vectơ là một đoạn thẳng có hướng, nghĩa là đã chỉ ra điểm đầu và điểm cuối.

+ Vectơ có điểm đầu là A, điểm cuối là B được kí hiệu là AB
, đọc là vectơ AB.

+ Đường thẳng đi qua hai điểm A và B gọi là giá của vectơ AB.

+ Độ dài của đoạn thẳng AB gọi là độ dài của AB và được kí hiệu là AB. Như vậy ta có AB=AB.

Chú ý: Một vectơ khi không cần chỉ rõ điểm đầu và điểm cuối có thể viết là a,  b,  x,  y,...

Ví dụ: Cho tam giác ABC cân tại A có AB = AC = 2a, BC = 2a3. Gọi M là trung điểm BC. Tìm điểm đầu, điểm cuối, giá và độ dài của các vectơ: BA,  MB,  AM.

Hướng dẫn giải

+ Vectơ BA:

BA có điểm đầu là B, điểm cuối là A và có giá là đường thẳng AB.

Ta có: BA = BA = 2a.

+ Vectơ MB:

MB có điểm đầu là M, điểm cuối là B và có giá là đường thẳng MB.

Vì M là trung điểm BC nên BM = BC2=2a32=a3.

Do đó MB=MB=a3.

+ Vectơ AM:

AM có điểm đầu là A, điểm cuối là M và có giá là đường thẳng AM.

Tam giác ABC cân tại A có AM là đường trung tuyến (do M là trung điểm BC).

Do đó AM cũng là đường cao của tam giác cân ABC.

Suy ra AM  BC.

Tam giác ABM vuông tại M: AM2 = AB2 – BM2 (Định lý Py ‒ ta ‒ go)

 AM2 = 4a2 – 3a2 = a2.

Ta suy ra AM = a.

Do đó AM = AM = a.

2. Hai vectơ cùng phương, cùng hướng

Hai vectơ được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.

Ví dụ: Tìm các vectơ cùng phương trong hình bên dưới.

Hướng dẫn giải

Trong hình trên, ta có:

+) MN có giá là đường thẳng MN, PQ có giá là đường thẳng PQ, mà hai đường thẳng MN và PQ trùng nhau.

Do đó MN và PQ là hai vectơ cùng phương vì chúng có giá trùng nhau.

+) Ta có: EF có giá là đường thẳng EF, GH có giá là đường thẳng GH, mà hai đường thẳng EF và GH song song với nhau.

Do đó EF và GH là hai vectơ cùng phương vì chúng có giá song song.

Chú ý:

Trong hình trên, hai vectơ MN và PQ cùng phương và có cùng hướng đi từ trái sang phải. Ta nói MN và PQ là hai vectơ cùng hướng.

+ Hai vectơ EF và GH cùng phương nhưng ngược hướng với nhau (EF có hướng từ trên xuống dưới và GH có hướng từ dưới lên trên). Ta nói hai vectơ EF và GH là hai vectơ ngược hướng.

Nhận xét:

+ Hai vectơ cùng phương chỉ có thể cùng hướng hoặc ngược hướng.

+ Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi hai vectơ AB và AC cùng phương.

Giải thích: Ta thấy nếu ba điểm A, B, C thẳng hàng thì hai vectơ AB và AC có giá trùng nhau nên chúng cùng phương. Ngược lại, nếu hai vectơ AB và AC cùng phương thì ta suy ta hai đường thẳng AB và AC phải song song hoặc trùng nhau. Mà hai đường thẳng này có điểm A là điểm chung, do đó đường thẳng AB và AC trùng nhau. Khi đó ta có ba điểm A, B, C thẳng hàng. Vì vậy, ba điểm A, B, C thẳng hàng khi và chỉ khi hai vectơ AB và AC cùng phương.

3. Vectơ bằng nhau – Vectơ đối nhau

Hai vectơ a và b được gọi là bằng nhau nếu chúng cùng hướng và có cùng độ dài, kí hiệu a=b.

Hai vectơ a và b được gọi là đối nhau nếu chúng ngược hướng và có cùng độ dài, kí hiệu a=b. Khi đó vectơ b được gọi là vectơ đối của vectơ a.

Chú ý:

+ Cho vectơ a và điểm O, ta luôn tìm được một điểm A duy nhất sao cho OA=a. Khi đó độ dài của a là độ dài đoạn thẳng OA, kí hiệu là a.

+ Cho đoạn thẳng MN, ta luôn có NM=MN.

Ví dụ: Cho hình bình hành ABCD. Tìm các cặp vectơ bằng nhau và các cặp vectơ đối nhau.

Hướng dẫn giải

+ Các cặp vectơ bằng nhau:

Vì ABCD là hình bình hành nên ta có AB // DC và AB = DC (tính chất hình bình hành)

Mà hai vectơ AB,  DC cùng hướng và hai vectơ BA,  CD cùng hướng.

Do đó AB,  DC và BA,  CD.

Tương tự, vì ABCD là hình bình hành nên ta có AD // BC và AD = BC.

Mà hai vectơ AD,  BC cùng hướng và hai vectơ DA=CB cùng hướng.

Do đó AD,  BC và DA=CB.

Vậy ta có 4 cặp vectơ bằng nhau là: AB=DCBA=CDAD=BC và DA=CB.

+ Các cặp vectơ đối nhau:

Vì ABCD là hình bình hành nên ta có AB // DC và AB = DC (tính chất hình bình hành)

Mà hai vectơ AB,  CD ngược hướng và hai vectơ BA,  DC ngược hướng.

Do đó AB=CD và BA=DC.

Tương tự, vì ABCD là hình bình hành nên ta có AD // BC và AD = BC.

Mà hai vectơ AD,  CB ngược hướng và hai vectơ DA,  BC ngược hướng.

Do đó AD=CB và DA=BC.

Vậy ta có 4 cặp vectơ đối nhau là: AB=CDBA=DCAD=CB và DA=BC.

4. Vectơ-không

Vectơ có điểm đầu và điểm cuối trùng nhau gọi là vectơ-không, kí hiệu là 0.

Chú ý:

+ Quy ước: vectơ-không có độ dài bằng 0.

+ Vectơ-không luôn cùng phương, cùng hướng với mọi vectơ.

+ Mọi vectơ-không đều bằng nhau: 0=AA=BB=CC=..., với mọi điểm A, B, C,...

+ Vectơ đối của vectơ-không là chính nó.

Ví dụ: Cho đoạn thẳng AB có độ dài bằng 4 cm. Gọi H là trung điểm của AB.

a) Tìm vectơ-không trong số các vectơ sau: AB,  AH,  BB,  HH,  HB,  AA.

b) Dùng kí hiệu 0 để biểu diễn các vectơ-không đó.

c) Tính độ dài các vectơ ở câu a.

Hướng dẫn giải

a) Vectơ-không là vectơ có điểm đầu và điểm cuối trùng nhau.

Do đó các vectơ-không là: BB,  HH,  AA.

b) Ta viết 0=BB=HH=AA.

c) BB=HH=AA=0=0.

AB=AB=4 (cm).

Vì H là trung điểm AB nên AH = HB = AB2=42=2 (cm).

Do đó AH = AH = 2 (cm) và HB= HB = 2 (cm).

Đánh giá

0

0 đánh giá