Với giải sách bài tập Toán 7 Bài tập cuối chương 6 sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:
Giải SBT Toán lớp 7 Bài tập cuối chương 6
Giải Toán 7 trang 17 Toán 7 Tập 2
Bài 1 trang 17 Toán 7 Tập 2: Tìm a, b, c biết:
a) và a + b + c = 48.
b) và a + c = 26.
Lời giải:
a) Từ và a + b + c = 48, áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Khi đó:
• = 8 nên x = 8 . 2 = 16;
• = 8 nên y = 8 . 1 = 8;
• = 8 nên c = 8 . 3 = 24.
Vậy a = 16, b = 8, c = 24.
b) Ta có: suy ra hay tức là
suy ra hay tức là
Khi đó .
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
.
Khi đó:
• nên x = 2 . 4 = 8;
• nên y = 2 . 6 = 12;
• nên c = 2 . 9 = 18.
Vậy a = 8, b = 12, c = 18.
a)
b)
Lời giải:
a) Ta có:
Với a = 1 và b = 60 thì a . b = 1 . 60 = 60;
Với a = 2 và b = 30 thì a . b = 2 . 30 = 60;
Với a = 3 và b = 20 thì a . b = 3 . 20 = 60;
Với a = 4 và b = 15 thì a . b = 4 . 15 = 60;
Với a = 5 và b = 12 thì a . b = 5 . 12 = 60.
Khi đó 1 . 60 = 2 . 30 = 3 . 20 = 4 . 15 = 5 . 12 (vì cùng bằng 60).
Vậy a và b tỉ lệ nghịch với nhau.
b) Ta có:
Với m = -2 và n = -12 thì m . n = (-2) . (-12) = 24;
Với m = -1 và n = -24 thì m . n = (-1) . (-24) = 24;
Với m = 1 và n = 24 thì m . n = 1 . 24 = 24;
Với m = 2 và n = 12 thì m . n = 2 . 12 = 24;
Với m= 3 và n = 9 thì m . n = 3 . 9 = 27.
Khi đó (-2) . (-12) = (-1) . (-24) = 1 . 24 = 2 . 12 ≠ 3 . 9
Vậy a và b không tỉ lệ nghịch với nhau.
Lời giải:
Để x và y tỉ lệ nghịch với nhau thì xy = (-5) . 8 = -40.
Suy ra x = và y =
Khi đó:
• Với x = 5 thì
• Với y = -12 thì
• Với x = 3 thì
• Với x = 2 thì
• Với x = -4 thì
Vậy ta có bảng sau:
a) Tìm ba số x, y, z thỏa mãn x : y : z = 1 : 2 : 2 và x + y + z = 25.
b) Tìm ba số a, b, c thỏa mãn a : b : c = 3 : 4 : 5 và a + b – c = 100.
Lời giải:
a) Từ x : y : z = 1 : 2 : 2 ta có .
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
.
Khi đó:
• nên x = 5 . 1 = 5;
• nên y = 5 . 2 = 10;
• nên y = 5 . 2 = 10.
Vậy x = 5, y = 10, z = 10.
b) Từ a : b : c = 3 : 4 : 5 ta có .
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Khi đó:
• nên a = 50 . 3 = 150;
• nên b = 50 . 4 = 200;
• nên c = 50 . 5 = 250.
Vậy a = 150; b = 200; c = 250.
Lời giải:
Gọi x (giờ) là thời gian 6 máy gặt sẽ gặt xong cánh đồng đó.
Do số máy gặt và thời gian gặt xong một cánh đồng là hai đại lượng tỉ lệ nghịch nên áp dụng tính chất của các đại lượng tỉ lệ nghịch ta có:
6x = 4 . 6 = 24 suy ra
Vậy nếu có 6 máy gặt như thế sẽ gặt xong cánh đồng đó hết 4 giờ.
Lời giải:
Diện tích của hình chữ nhật có hai kích thước là d (cm) và r (cm) là dr (cm2).
Mà diện tích của hình chữ nhật bạn Cúc muốn cắt có diện tích 100 cm2 nên dr = 100.
Vậy công thức thể hiện mối quan hệ giữa hai đại lượng d và r là: dr = 100.
a) Hãy tính a theo b, tính b theo c.
b) Hãy tính a theo c.
Lời giải:
a) Do a tỉ lệ thuận với b theo hệ số tỉ lệ m nên ta có: a = mb.
Do b tỉ lệ thuận với c theo hệ số tỉ lệ n nên ta có: b = nc.
Vậy a = mb và b = nc.
b) Thay b = nc vào a = mb ta có: a = mnc.
Vậy a = mnc.
Lời giải:
Gọi x (giờ) là thời gian 16 bạn sẽ làm vệ sinh xong lớp học.
Do số bạn làm vệ sinh lớp học và thời gian làm xong là hai đại lượng tỉ lệ nghịch nên áp dụng tính chất của các đại lượng tỉ lệ nghịch ta có:
16x = 4 . 2 = 8 suy ra giờ = 30 phút.
Vậy nếu có 16 bạn sẽ làm vệ sinh xong lớp học hết 30 phút.
Lời giải:
Đổi 1 kg = 1 000 g.
Bạn Hoa chia đều 1 kilogam đường (1 000 g đường) vào n túi nên khối lượng đường trong mỗi túi là: (g).
Mà theo bài p (g) là khối lượng đường trong mỗi túi.
Do đó p = .
Khi đó, n và p là hai đại lượng tỉ lệ nghịch với nhau theo hệ số tỉ lệ là 1 000.
Vậy công thức tính p theo n là p =
Lời giải:
Gọi x (giờ) là thời gian 6 bạn sẽ dọn xong cỏ trong vườn trường.
Do số bạn dọn cỏ và thời gian các bạn dọn xong cỏ trong vườn là hai đại lượng tỉ lệ nghịch nên áp dụng tính chất của các đại lượng tỉ lệ nghịch ta có:
6x = 2 . 3 = 6 suy ra
Vậy nếu có 6 bạn sẽ dọn xong cỏ vườn trường trong 1 giờ.
Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 3 : Đại lượng tỉ lệ nghịch
Bài 1 : Biểu thức số, biểu thức đại số
Bài 3 : Phép cộng và phép trừ đa thức một biến
1. Tỉ lệ thức:
1.1. Khái niệm:
Với b, c ≠ 0 ta có tỉ lệ thức là đẳng thức của hai tỉ số:
Tỉ lệ thức còn được viết là: a : b = c : d
1.2. Các tính chất:
* Tính chất 1: Nếu thì ad = bc. (b.d ≠ 0)
* Tính chất 2: Ngược lại so với tính chất 1 ta có:
Nếu ad = bc và a, b, c, d ≠ 0 thì ta có những tỉ lệ thức sau:
; ; ; .
Ví dụ:Cho đẳng thức x.2 = 3.y.Với x, y ≠ 0 ta có các tỉ lệ thức sau:
; ; ; .
2. Dãy tỉ số bằng nhau:
2.1. Khái niệm:
- Ta gọi các đẳng thức: là một dãy các tỉ số bằng nhau.
- Khi có dãy tỉ số bằng nhau , ta nói các số a, c, e tỉ lệ với các số b, d, f và có thể ghi là: a : c : e = b : d : f.
2.2. Các tính chất:
* Tính chất 1: (các mẫu số phải khác 0).
* Tính chất 2: Tương tự với tỉ lệ thức, ta có tính chất sau của dãy tỉ số bằng nhau.
Từ dãy tỉ số bằng nhau ta viết được:
(các mẫu số phải khác 0).
3. Khái niệm hai đại lượng tỉ lệ thuận:
Cho k là hằng số khác 0, ta nói đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ k nếu y liên hệ với x theo công thức: y = kx.
Từ y = kx (k ≠ 0) ta suy ra . Vậy nếu y tỉ lệ thuận với x theo hệ số tỉ lệ k thì x cũng tỉ lệ thuận với y theo hệ số tỉ lệ và ta nói hai đại lưỡng x, y tỉ lệ thuận với nhau.
4. Tính chất của các đại lượng tỉ lệ thuận:
Nếu hai đại lượng tỉ lệ thuận với nhau thì:
- Tỉ số hai giá trị tương ứng của chúng luôn không đổi:
- Tỉ số hai giá trị tùy ý của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia:
; ;...
5. Khái niệm hai đại lượng tỉ lệ nghịch:
Cho a là một hằng số khác 0. Nếu đại lượng y liên hệ với đại lượng x theo công thức hay xy = a thì ta nói y tỉ lệ nghịch với x theo hệ số tỉ lệ a.
Chú ý: Khi y tỉ lệ nghịch với x thì x cũng tỉ lệ nghịch với y và ta nói hai đại lượng đó tỉ lệ nghịch với nhau.
6. Tính chất của các đại lượng tỉ lệ nghịch:
Nếu hai đại lượng y và x tỉ lệ nghịch với nhau thì:
- Tích hai giá trị tương ứng của chúng luôn không đổi (bằng hệ số tỉ lệ):
x1y1 = x2y2 = x3y3 = … hay
- Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia:
; ; …