Lập phương trình mặt cầu (S) trong mỗi trường hợp sau: (S) có tâm I(3; – 7; 1) và bán kính R = 2

188

Với giải Bài 6 trang 86 Toán 12 Tập 2 Cánh diều chi tiết trong Bài 3: Phương trình mặt cầu giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 3: Phương trình mặt cầu

Bài 6 trang 86 Toán 12 Tập 2: Lập phương trình mặt cầu (S) trong mỗi trường hợp sau:

a) (S) có tâm I(3; – 7; 1) và bán kính R = 2;

b) (S) có tâm I(– 1; 4; – 5) và đi qua điểm M(3; 1; 2);

c) (S) có đường kính là đoạn thẳng CD với C(1; – 3; – 1) và D(– 3; 1; 2).

Lời giải:

a) Phương trình mặt cầu (S) có tâm I(3; – 7; 1) và bán kính R = 2 là:

(x – 3)2 + (y + 7)2 + (z – 1)2 = 4.

b) Ta có R = IM = 312+142+252=74.

Phương trình mặt cầu (S) có tâm I(– 1; 4; – 5) và đi qua điểm M(3; 1; 2) là:

(x + 1)2 + (y – 4)+ (z + 5)2 = 74.

c) Tâm của mặt cầu (S) đường kính CD là trung điểm I của đoạn thẳng CD.

Ta có xI=1+32=1;yI=3+12=1;zI=1+22=12. Suy ra I1;1;12.

Bán kính R = IC = 112+312+1122=412.

Phương trình mặt cầu (S) có đường kính là đoạn thẳng CD là:

(x + 1)2 + (y + 1)2 +z122 = 414.

Đánh giá

0

0 đánh giá