Cho mặt cầu có phương trình (x – 1)^2 + (y + 2)^2 + (z – 7)^2 = 100. Xác định tâm và bán kính của mặt cầu

187

Với giải Bài 4 trang 86 Toán 12 Tập 2 Cánh diều chi tiết trong Bài 3: Phương trình mặt cầu giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 3: Phương trình mặt cầu

Bài 4 trang 86 Toán 12 Tập 2: Cho mặt cầu có phương trình (x – 1)2 + (y + 2)2 + (z – 7)2 = 100.

a) Xác định tâm và bán kính của mặt cầu.

b) Mỗi điểm A(1; 1; 1), B(9; 4; 7), C(9; 9; 10) nằm trong, nằm ngoài hay nằm trên mặt cầu đó?

Lời giải:

a) Ta có (x – 1)2 + (y + 2)2 + (z – 7)2 = 100 ⇔ (x – 1)2 + [y – (– 2)]2 + (z – 7)2 = 102.

Mặt cầu đã cho có tâm I(1; – 2; 7) và bán kính R = 10.

b) Do IA = 112+122+172=35 < 10 nên điểm A(1; 1; 1) nằm trong mặt cầu đó.

Do IB = 912+422+772=100 = 10 nên điểm B(9; 4; 7) nằm trên mặt cầu đó.

Do IC = 912+922+1072=194 > 10 nên điểm C(9; 9; 10) nằm ngoài mặt cầu đó.

Đánh giá

0

0 đánh giá