Chứng minh rằng phương trình x^2 + y^2 + z^2 – 6x – 2y – 4z – 11 = 0 là phương trình của một mặt cầu

88

Với giải Luyện tập 4 trang 83 Toán 12 Tập 2 Cánh diều chi tiết trong Bài 3: Phương trình mặt cầu giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 3: Phương trình mặt cầu

Luyện tập 4 trang 83 Toán 12 Tập 2: Chứng minh rằng phương trình

x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0 là phương trình của một mặt cầu. Tìm tâm I và bán kính R của mặt cầu đó.

Lời giải:

Cách 1:

Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0

⇔ x2 – 2 ∙ 3 ∙ x + 9 + y2 – 2 ∙ 1 ∙ y + 1 + z2 – 2 ∙ 2 ∙ z + 4 = 9 + 1 + 4 + 11

⇔ (x – 3)2 + (y – 1)2 + (z – 2)2 = 25.

Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R = 25 = 5.

Cách 2:

Ta có x2 + y2 + z2 – 6x – 2y – 4z – 11 = 0

⇔ x2 + y2 + z2 – 2 ∙ 3 ∙ x – 2 ∙ 1 ∙ y – 2 ∙ 2 ∙ z – 11 = 0

Khi đó a2 + b2 + c2 – d = 32 + 12 + 22 – (– 11) = 25 > 0.

Vậy phương trình đã cho là phương trình của một mặt cầu có tâm I(3; 1; 2) và bán kính R = 25 = 5.

Đánh giá

0

0 đánh giá