Trong Ví dụ 6, giả sử người đi biển di chuyển theo đường thẳng từ vị trí I(21; 35; 50) đến vị trí D(5 121; 658; 0)

161

Với giải Luyện tập 5 trang 85 Toán 12 Tập 2 Cánh diều chi tiết trong Bài 3: Phương trình mặt cầu giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 3: Phương trình mặt cầu

Luyện tập 5 trang 85 Toán 12 Tập 2: Trong Ví dụ 6, giả sử người đi biển di chuyển theo đường thẳng từ vị trí I(21; 35; 50) đến vị trí D(5 121; 658; 0). Tìm vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng.

Lời giải:

Đường thẳng ID đi qua điểm I và nhận ID=5100;623;50 làm vectơ chỉ phương.

Phương trình tham số của đường thẳng ID là x=21+5100ty=35+623tz=5050t (t là tham số).

Giả sử H là vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển có thể nhìn thấy ánh sáng từ ngọn hải đăng. Khi đó IH = R.

Ta có H ∈ ID nên gọi tọa độ điểm H(21 + 5 100t; 35 + 623t; 50 – 50t).

IH=5100t;623t;50t

IH = R 5100t2+623t2+50t2=4000

26400629t2=4000

⇔ t ≈ ± 0,78.

+ Với t ≈ 0,78, ta có H(3 999; 520,94; 11), IH = (3 978; 485,94; – 39).

Khi đó ID=5039IH nên hai vectơ ID,IH cùng hướng, vậy thỏa mãn H thuộc đoạn thẳng ID.

+ Với t ≈ – 0,78, ta có H(– 3 957; – 450,94; 89), IH = (– 3 978; – 485,94; 39).

Khi đó ID=5039IH nên hai vectơ ID,IH ngược hướng, vậy H không thuộc đoạn thẳng ID.

Vậy vị trí cuối cùng trên đoạn thẳng ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng là điểm H(3 999; 520,94; 11).

Đánh giá

0

0 đánh giá